INCLASSIFIED IN

MIC RO-CARD

CONTROL ONLY

Reproduced by

Armed Services Technical Information Agency

ARLINGTON HALL STATION; ARLINGTON 12 VIRGINIA

INCLASSIFIED

4425

THE DEPENDENCE OF THE MAGNUS FORCE AND MOMENT ON THE NOSE SHAPE OF CYLINDRICAL BODIES OF FINENESS RATIO 5 AT A MACH NUMBER OF 1,75

15 APRIL. 1957

FILE COPY

Return to

ASTIA

ARLINGTON HALL STATION

ARLINGTON 12, VIRGINIA

Attn: TISSS

U. S. NAVAL ORDNANCE LABORATORY
WHITE OAK, MARYLAND

Best Available Copy

UNCIASSIFIED NAVORD Report 4425

Aeroballistic Research Report 361 /

THE DEPENDENCE OF THE MAGNUS FORCE AND MOMENT ON THE NOSE SHAPE OF CYLINDRICAL BODIES OF FINENESS RATIO 5 AT A MACH NUMBER OF 1.75

Prepared by:

Wallace Luchuk

ABSTRACT: This report presents the results of wind-tunnel measurements of the Magnus force and moments on cylindrical bodies of fineness ratio 5 at a free stream Mach number of 1.75 and a Reynolds number of 5.5 million (based on model length). Six configurations were tested, five of which had variations in nose shape and one configuration had artificial roughness added to the very tip of the nose. Data for one configuration was taken by two different techniques as a check. The angle of attack range was from +16 degrees to -22 degrees and the rotational speeds attained were as high as 660 revolutions per second.

U. S. NAVAL ORDNANCE LABORATORY
WHITE OAK, MARYLAND

UNCLASSIFIED

This report assemble the results of Magnil-force measurements conducted in the NOL 40 x 40 . Aeroballistic Tunnel No. I using cylindrical bodies of fineness (length to diameter) ratio 5. There were six configurations in all, of which five configurations differe only in the nose shape. The nose the for all the models was two body diameters. Three of the five different nose shapes had a systematic veriation in the ogival radius. The test was performed at a free freew Mach number of 1.75 and a Reynolds umber of 5.5 million (based on the model length). One configuration was tested employing two different independent techniques in order to afford a check on the data. The angle of attack range was from +16 degrees to -22 degrees and rotational spin rates as high as 660 revolutions per second were attained. A complete discussion of the instrumentation and wind-tunnel test techniques is presented.

 $T_{\rm c} \sim 3$ test was performed through the direction of the Bureau of Ordnance (red) under the task number 803-767/73003/01-040.

W. W. WILBOURNE Captain, USN Commander

H. H. KURZWEG By direction

TABLE OF CONTENTS

			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		total and the desired and	Page
Introdu	ction		1.00041
		ls	
Histori	cal Sk	etch of the Magnus Phenomenon	1
Introdu	etion	to the Problems of Wind Tunnel Magnus Measurement	3
Objecti	WAS OF	to the Froblems of wind funder Magnus Measurement	6
Doggaria	+ i o o	the Test	10
Descrip	otame	of the NOL 40 x 40 cm Aeroballistics Tunnel No. 1	11
Medala	istrune	ntation	11
Moders		***************************************	
Wind Tu	umer r	est Techniques	15

Data Re	euuct10	on and Accuracy	17

		••••••	
Conclus	ions .	•••••••••••••••••••••••••••••••••••••••	25

Appendi	х	•••••••	29
		8	
Explana	tion o	f Data Listing	31
		ILLUSTRATIONS	
Figure	1	Rotational Speed Versus Wind Tunnel Mach Number for	Various
		Size Models (Advance Ratio = 1 in 20)	
Figure	2	Cutaway Drawing of the NOL Wind Tunnel Building	
Figure	3	Assembly Drawing of the Model-Air Turbine Unit	
Figure	4	Exploded Model-Air Turbine Unit	
Figure	5	Diagramatic Sketch of the Strain Gage Readout Syste	m
Figure	6	Strain Gage Readout System and the Frequency Consol	.e
Figure	7	Wind Tunnel Test Set-up	
Figure	8	Diagramatic Sketch of the Frequency Console	
Figure	9	Schematic Diagram of Servo-Speed Control	
Figure	10	Servo-Speed Control	
Figure	11	Model Dimensions	
Figure	12	Assembled Model with the Tangent Ogive Nose	
Figure	13	Cone Nose	
Figure	-	Secant Ogive Nose	
Figure		Tangent Ogive Nose	
Figure		Haack-Sears Nose	
Figure		Typical Projectile Nose	
Figure		Cone Nose with No. 100 Grit	
Figure		Sample Traces of the Constant Angle of Attack, Vari	able Spin
3	-	Many & Dian	•

ILLUSTRATIONS (Cont'd)

	- Aller and the second
Figure 20	Sample Traces of the Constant Spin, Variable Angle of Attack Type of Blow
Figure 21	Force and Moment Coordinate System
Figure 22	Side Force Coefficient, Cy, versus Rotational Speed, p,
-0	Cone Nose
Figure 23	Yawing Moment Coefficient, Cy, versus Rotational Speed, p,
- 10	Cone Nose
Figure 24	Side Force Coefficient, Cy, versus Rotational Speed, p,
	(rev./sec.) - Secant Ogive Nose
Figure 25	Yawing Moment Coefficient, Cψ, versus Rotational Speed, p -
	Secant Ogive Nose
Figure 26	Side Force Coefficient, Cy, versus Rotational Speed, p -
	Tangent Ogive Nose
Figure 27	Yawing Moment Coefficient, Cψ, versus Rotational Speed, p -
	Tangent Ogive Nose
Figure 28	Side Force Coefficient, Cy, versus Rotational Speed, p -
	Haack-Sears Nose
Figure 29	Yawing Moment Coefficient, Cy, versus Rotational Speed, p -
	Haack-Sears Nose
Figure 30	Side Force Coefficient, Cy, versus Rotational Speed, p -
	Typical Projectile Nose
Figure 31	Yawing Moment Coefficient, C_{ψ} , versus Rotational Speed, p -
7.	Typical Projectile Nose
Figure 32	Side Force Coefficient, Cy, versus Rotational Speed, p -
Tid 22	Cone Nose with No. 100 Grit
Figure 33	Yawing Moment Coefficient, Cy, versus Rotational Speed, p -
Ed	cone wose with wo. 100 Grit
Figure 34	C_Y , C_{Ψ} , and Center of Magnus versus α_I for the Typical
	Projectile Nose (p = 125 rev./sec.)
Figure 35	c_{Y} , c_{ψ} , and Center of Magnus versus a_{I} for the Typical
	Projectile Nose (p = 126 rev./sec.)
Figure 36	C_Y , C_Y , and Center of Magnus versus α_I for the Typical
	Projectile Nose (p = 126 rev./sec.)
Figure 37	C_Y , C_V , and Center of Magnus versus α_I for the Typical
	·
Figure 38	Projectile Nose (p = 204 rev./sec.)
rigare 20	c_{Y} , c_{ψ} , and Center of Magnus versus a_{I} for the Typical
	Projectile Nose (p = 203 rev./sec.)
Figure 39	c_Y , c_Ψ , and Center of Magnus versus a_I for the Typical
•	Projectile Nose (p = 255 rev./sec.)
Figure 40	C_Y , C_Y , and Center of Magnus versus α_I for the Typical
	Projectile Nose (p = 309 rev./sec.)
Figure 41	c_Y , c_{ψ} , and Center of Magnus versus a_{χ} for the Typical
-	Projectile Nose (p = 312 rev./sec.)
Figure 42	C_{Y} , C_{Ψ} , and Center of Magnus versus α_{I} for the Typical
	Projectile Nose (p = 370 rev./sec.)

ILLUSTRATIONS (Cont'd)

Figure	43	c_Y , c_Ψ , and Center of Magnus versus α_T for the Typical
		Projectile Nose (p = 432 rev./sec.)
Figure	44	C_{Y} , C_{Ψ} , and Center of Magnus versus α_{I} for the Typical
		Projectile Nose (p = 508 rev./sec.)
Figure	45	c_Y , c_Ψ , and Center of Magnus versus α_I for the Typical
		Projectile Nose (p = 169 rev./sec.)
Figure	46	c_Y , c_{ψ} , and Center of Magnus versus α_T for the Typical
		Projectile Nose (p = 86 rev./sec.)
Figure	47	$c_Y^{}$, $c_Y^{}$, and Center of Magnus versus $\alpha_I^{}$ for the Typical
	17 at 10 at 10 at 10	Projectile Nose (p = 92 rev./sec.)
Figure	48	Cy, C $_{\psi}$, and Center of Magnus versus $\alpha_{\mathtt{I}}$ for the Typical
		Projectile Nose (p = 94 rev./sec.)
Figure	49	c_{Y} , c_{Ψ} , and Center of Magnus versus a_{I} for the Typical
		Projectile Nose (p = 90 rev./sec.)
Figure	50	C_Y , C_{ψ} , and Center of Magnus versus α_I for the Typical
		Projectile Nose (p = 122 rev./sec.)
Figure	51	C_Y , C_ψ , and Center of Magnus versus α_I for the Typical
		Projectile Nose (p = 211 rev./sec.)
Figure	52	C_Y , C_ψ , and Center of Magnus versus α_I for the Typical
		Projectile Nose (p = 263 rev./sec.)
Figure	53	C_Y , C_{Ψ} , and Center of Magnus versus α_I for the Typical
	1071/70	Projectile Nose (p = 309 rev./sec.)
Figure	54	C_{Y} , C_{ψ} , and Center of Magnus versus α_{I} for the Typical
Figure	55	Projectile Nose (p = 373 rev./sec.)
Figure	11	c_{Y} , c_{Ψ} , and Center of Magnus versus α_{I} for the Typical
44 1110	-/	Projectile Nose (p = 468 rev./sec.)
Figure	26	The Effect of Nose Shape on the Side Force Coefficient, Cy
Pianno	67	(p = 153 rev./sec.) The Effect of Nega Shape on the Vaying Memont Coefficient C
Figure	21	The Effect of Nose Shape on the Yawing Moment Coefficient, Cy
Figure	58	(p = 153 rev./sec.) The Effect of Nose Shape on the Conton of Magnus (p = 153 rev./sec.)
		The Effect of Nose Shape on the Center of Magnus ($p = 153 \text{ rev./sec.}$) The Effect of Nose Shape on the Side Force Coefficient, C_Y
Figure	29	(p = 305 rev./sec.)
Figure	60	The Effect of Nose Shape on the Yawing Moment Coefficient, c_{ψ}
Ü		(p = 305 rev./sec.)
Figure	61	The Effect of Nose Shape on the Center of Magnus
		(p = 305 rev./sec.)
Figure	62	The Effect of Nose Shape on the Side Force Coefficient, CY
	-	(p = 458 rev./sec.)
Figure	63	The Effect of Nose Shape on the Yawing Moment Coefficient, Cy
	~1	(p = 458 rev./sec.)
Figure	64	The Effect of Nose Shape on the Center of Magnus
		(p = 458 rev./sec.)

ILLUSTRATIONS (Cont'd)

Figure 65	The Effect of Ogival Radius on the Initial Magnus Charact-
Figure 66	The Effect of Spin on the Initial Magnus Characterists.
Figure 67	the Typical Projectile Nose Comparison of the Side Force Coefficients Obtained by Two Test Techniques
Figure 68	Comparison of the Yawing Moment Coefficients Obtained by Two Test Techniques

THE DEPENDENCE OF THE MAGNUS FORCE AND MOMENT ON THE NOSE SHAPE OF CYLINDRICAL BODIES OF FINENESS RATIO 5 AT A MACH NUMBER OF 1.75

INTRODUCTION

1. In the continuing task of providing accurate prediction of missile stability, ballisticians have concentrated, in recent years, on obtaining more reliable measurements of the aerodynamic stability derivatives. Two of these derivatives are the Magnus force and the Magnus moment derivatives. These derivatives are due to forces and moments which appear when the body is spinning and at an angle of attack with the relative wind. These forces and moments are, in general, considerably smaller than the static aerodynamic forces and moments, and are far more difficult to measure. Formerly, these derivatives were estained only from the free flight ballistics ranges, but with the development of new and specialized instrumentation, the wind-tunnel facility at the Naval Ordnarce Laboratory has successfully completed a series of Magnus measurements. This report presents the results of one part of the overall program of Magrus measurement in the wind tunnels.

List of Symbols

```
free-stream speed of sound ft./sec. (=\sqrt{6}, 1)
         speed of sound at stagnation conditions ft./sec. ( = VrRTo)
\mathbf{a}_{\mathbf{C}}
         coefficient reference area ft.<sup>2</sup> (=\pi D^2/4)
Α
         data reduction constant (see Appendix)
Ay
Α
         data reduction constant (see Appendix)
B_{\mathbf{Y}}
         data reduction constant (see Appendix)
         data reduction constant (see Appendix)
В
         side force coefficient, non-dimensional ( = Y/qA)
CY
         yawing moment coefficient, non-dimensional ( = \( Y/qAD \)
Cy
         Magnus force coefficient, non-dimensional (d/d\alpha) (C_{Y}2V/pD)
\mathtt{c}_{\mathtt{Y}_{p_{\!\alpha}}}
c_{\gamma\!\!\!/p_{\!\scriptscriptstyle CL}}
         Magnus moment coefficient, non-dimensional (d/d\alpha) (C_{\psi}2V/pD)
D
         body diameter (0.25 ft.)
```

forward yaw strain gage constant (in.lbs./chart division)

K3

List of Symbols (Cont'd)

aft yaw strain-gage constant (inch lbs./chart division) K_{l_4} l nose length (0.5 ft.) forward yaw gage chart reading under load (chart divisions) l٦ forward yaw gage chart reading under no load (chart divisions) 130 aft yaw gage chart reading under load (chart divisions) l1 aft yaw gage chart reading under no load (chart divisions) 140 overall body length (1.25 ft.) L free stream Mach number (M = 1.75) M rotational velocity radians/sec. р free stream static pressure lbs./ft? P free stream rest or stagnation pressure lbs./ft2. Po free stream dynamic pressure lbs./ft2 (VPM2/2) q body radius (0.125 ft.) gas constant (1716 ft²/sec² OR) R free-stream Reynolds number based on model length computed by R_{e} Sutherland formula, non-dimensional (5.5 million) free stream static temperature, degrees Rankine Т free stream total temperature, degrees Rankine To free stream air velocity, ft./sec. ν axial distance from the model nose, ft. axial distance from the model nose of the forward yaw gage **x**3 electrical center, ft. axial distance from the model nose of the aft yaw gage X) electrical center, ft. axial distance from the model nose of the Center of Gravity, (3.80 ft.)

71.4	_		
List	OI.	Symbols	(Cont'd)

- y lateral coordinate, ft.
- Y side force, lbs.
- α angle of attack, degrees or radians
- α₁ indicated angle of attack, degrees
- δ ratio of specific heats, non-dimensional (1.4)
- E probable error notation
- ψ yawing moment, inch lbs.

Ballistic Magnus Coefficient Symbols

- F Magnus force, lbs.
- i 90 degree rotation vector
- K Ballistic Magnus Force Coefficient, non-dimensional
- K_T Ballistic Magnus Moment Coefficient, non-dimensional
- T Magnus moment, ft. lbs.
- α pitch angle, degrees or radians
- by yaw angle, degrees or radians
- f complex yaw angle degrees or radians, $(=\alpha + i\beta)$
- ? free stream air density, lb.sec2/ft.

Historical Sketch of the Magnus Phenomenon

- 2. Throughout this report the terms, "Magnus force and Magnus moment", or, "Magnus characteristics", are extensively used, and as a concession to brevity they may sometimes be referred to simply as "Magnus."
- 3. In the search for material on the history of Magnus the author was unable, in some instances, to study "first sources" for their substance. When this occurred, it was necessary to rely on the reports and comments of those authors who were fortunate enough to have access to them.
- 4. The "Magnus" effect is that aerodynamic phenomenon that describes the fact that a two dimensional or three dimensional body rotating in a cross-flow experiences a lift force at right angles to the flow. The effects of

this phenomenon have been observed for many years with the earliest reports occurring in the seventeenth century. G. T. Walker (reference a) states that the first observations of the effects of Magnus were made in 1671 when it was noted that the path of a "cut" tennis ball or a "sliced" golf ball described a curve. Sir Isacc Newton was aware of this fact (reference b). The effect was later observed by artill ists in the deflected trajectories of cannon balls. B. Robins (references and d) also contended that the curved flight of cannon balls was due to notation. In the early nineteenth century artillerists began to experiment to explain these erratic trajectories by eccentrically weighting the cannon balls, and by inserting the cannon balls into the cannon with the center of gravity of the ball in some preferred position, the resulting trajectory was curved in that direction. The great French mathematician, Poisson, demonstrated in 1839 that the deflections could not be explained by the increased air friction on one side of the rotating ball as was popularly supposed at that time (reference e). Around 1850, about the time that the spiral bore gun was being introduced, the Berlin physicist, Professor G. Magnus was presented with the problem. He then proceeded with a series of experiments that conclusively proved the existenc. of a "Magnus" force and also made some original observations of the flow around bodies (reference f). Professor Magnus did not actually measure a Magnus force, but simply showed that one did exist and, in the light of his other observations, was able to show that this force could be explained by the fluid flow equation of Daniel Bernoulli. In 1877 Lord Rayleigh, (reference g) utilizing improvements in potential flow theory by Relmholtz, Sir William Thompson and others, was able to formulate a mathematical flow picture of a rotating cylinder in a riform stream and to compute a Magnus This classical two-dimensioned calculation, the superposition of a uniform parallel potential flow and a circulation flow, may still be found in theoretical hydrodynamic textbooks of the present day (references h, i, and j). Rayleigh, however, cautioned that while his potential flow construction yielded a substantially correct flow representation, a treatment of the real flow case must take into consideration the effect of the viscous flow at the surface of the cylinder as the connective link between the circulation of the body and the free stream. He insisted that the rell case must obey Sir William Thompsen's proposition that "circulation in a real fluid is impossible without viscosity."

5. The first quantitative measurements of a Magnus force were made by Lafay (references k and 1) in wind-tunnel tests early in the twentieth century. Lafay measured the Magnus force on a rotating cylinder in a crossflow, but due to the short length of his cylinder, he was unable to attain the large forces predicted by Rayleigh. Shortly after World War I a group of British ballisticians introduced the effects of Magnus into a new treatment of the dynamical behavior of rotating projectiles (references m and n). These men, aware of the existence of Magnus, had no knowledge of the magnitude of the Magnus force on a three-dimensional body and therefore they could arrive at no conclusions regarding the importance of Magnus on the free-flight behavior of projectiles. Nevertheless, they included Magnus in their work for the sake of completeness.

In 1923 Ackeret (reference o) made the first significant Magnus measurements in the wind tunnels at Göttingen, Germany. Using a new high-speed electric motor to rotate a cylinder in the windstream, Ackeret originally measured forces not much greater than those measured by Lafay. The small increase in force was due to the fact that Ackeret used a cylinder with a higher length to diameter ratio than that used by Lafay. Ackeret also noticed in his early experiments that there was a strong "end" effect which prevented his cylinder from developing the maximum Magnus force on all but the innermost portion of the cylinder. When, at L. Prandtl's suggestions, Ackeret terminated his cylinder with large end discs, he was able to attain Magnus forces approaching those predicted by the theory. Ackeret's measurements also showed that although the Magnus (or lift) forces attainable with a rotating cylinder were large, the drag of the cylinder was correspondingly large. The resulting lift to drag ratio of the rotating cylinder was substantially lower than those that could be obtained with the better airfoils of the day, so it appeared that use of a rotating cylinder as a means of aerodynamic sustentation was not very practical. However, at that time Anton Flettner, a German shipping magnate, was financing experiments at Göttingen to ascertain the feasibility of replacing the sails on his shipping vessels with more efficient airfoils, and upon hearing of the large forces developed by the rotating cylinder, conceived the idea of using the cylinders to replace the sails (reference p). This idea was highly publicized and discussed in papers by the foremost aerodynamicists at Göttingen; namely, Betz, Prandtl, and Ackeret (references q, r, and s), and aroused interest and criticism both on the Continent and in the United States (references t and u). Flettner proceeded to convert two of his ships into "rotorships" to prove the practicality of his idea. The tests of the ships indicated that the rotors did produce large forces, but the project was abandoned probably due to the fact that the rotorships were still required to tack in much the same manner as sailing ships. Consequently, even if the linear speed was high, the point-to-point speed was substantially reduced by the tacking. The rotorship, it appears, was not an aerodynamic failure but a transportational failure; however, there were papers as late as 1929 denouncing it as a misconception of aerodynamic theory (reference v). Shortly after Ackeret's measurements there was another similar test conducted in the United States by E. G. Reid which essentially checked Ackeret's results (reference w).

6. In 1924 a series of tests was conducted in Holland that attempted to unite the large lift of a rotating cylinder with the low drag of a conventional airfoil (references x, y, and z). These tests consisted of force measurements in a wind tunnel using a wing with a rotating cylinder fitted into the leading edge. These tests were not conclusive, the configuration being a poor airfoil shape when the cylinder was not rotated and an ineffective rotor when the cylinder was rotated. The boundary layer surveys that were taken in these tests did reveal that energy could be imparted to the boundary layer, and separation retarded, by rotating the cylinder. About this time Prandtl and Tietjens (reference a.1) were obtaining excellent pictures of the flow about rotating and non-rotating cylinders which photographically revealed the differences between real fluid flow.and ideal fluid flow.

- 7. In 1944 new criteria for the dynamic stability of spinning projectiles were advanced by Kelley and McShane which placed greater emphasis on the aerodynamic characteristics of the projectile (reference a.2). About this time the free-flight ballistic ranges were constructed at Aberdeen Proving Ground, Maryland which produced time-position-attitude histories of gunlaunched projectiles with unprecedented accuracy. These new precise measurements made it possible to determine the Magnus characteristics of projectiles from their freeflight behavior (reference a.3). Most of this work dealt with security-classified projects and cannot be mentioned here. A few years later the first wind-tunnel Magnus force measurements on three dimensional bodies were undertaken at low subsonic speeds, but even up to the present time there have been only a few such tests.
- 8. The new quantitative measurements of the Magnus force and moments probably stimulated the development of the first theory of Magnus for a three dimensional body. Martin (reference a.4), in 1953, devised a "distorted body" theory in which the distortion of the boundary layer (due to angle of attack and body rotation) produced a new "effective" body shape which is not symmetrical in the yaw plane. On the basis of the new shape, a side force can then be computed by linearised potential flow. Kelley corrected and added to Martin's work (reference a.5). This present theory, the only one in existence, is severely limited in its proper application in that it should only be used for a long body with a laminar boundary layer at small angles of attack in subsonic incompressible flow.
- 9. For more than two years the Naval Ordnance Laboratory has been performing wind-tunnel Magnus measurement tests at both subsonic and supersonic speeds.

Introduction to the Problems of Wind Tunnel Magnus Measurement

- 10. This introduction is intended to present a background to the problems that occurred with the undertaking of Magnus measurement in the NOL wind tunnels, and to present some of the possible solutions that appeared. It should serve to indicate how the development of the test technique and the test instrumentation took place with each bit of experience gained up to the present time.
- ll. Recent aeroballistic studies, which have more accurately evaluated the importance of the Magnus effect on the dynamic stability of spinning missiles, have emphasized the necessity of obtaining reliable Magnus-force measurements. Since about 1944 ballistic ranges were the only facilities working on this problem until around 1951 when the first wind-tunnel Magnus measurement activity began. It was quite natural to introduce this problem into the wind tunnel, because of the fine control of the flight variables possible. Also, the reliability of a set of data would be established if the measurements could be reproduced by another facility employing a widely different experimental procedure.
- 12. Since the free flight ballistics ranges had been actively engaged in the problem of measuring supersonic Magnus forces and moments for some

time before the wind tunnel undertook the problem, it was therefore logical to examine their test results for some indication of the magnitude of the Magnus force. Some of their results indicated that the ballistic Magnus force coefficient, $K_{\rm p}$, could be as small as 1/25th to 1/40th the ballistic normal force coefficient, $K_{\rm p}$ (see list of symbols and reference a.6) for these definitions). These ballistic coefficients are actually coefficient slopes in the usual aerodynamic sense and are similar to the ordinary aerodynamic stability derivatives. These ratios indicated that for many flight conditions there may often be greater than one order of magnitude difference in the actual forces. It should also be mentioned at this point that these ballistic range results were obtained for projectiles with high rotational velocities, having been fired from standard guns (guns with spiral bores that made one complete rotation as the projectile advanced between 20 to 140 body diameters down the gun barrel) or from a high-twist gun (a gun with a spiral bore that made one rotation in ten to twenty diameters of projectile advance). It was also apparent that if the wind-tunnel instrumentation could not produce the high rotational speeds necessary to duplicate the advance ratios produced by the range firings, then the Magnus forces in the wind tunnel would be even smaller (for the same size projectile) then those developed in the range.

- 13. Thus, the initial requirements of the wind-tunnel instrumentation were established. These requirements were:
- 1. an electrical strain-gage balance sufficiently strong in the pitch plane to withstand the strong normal forces, yet sufficiently weak in the yaw plane to be sensitive to the small Magnus forces.
- 2. a rotational motive source small enough to put inside a wind-tunnel model with sufficient power to rotate the model to the high spin rates necessary to duplicate the advance ratios of gun-launched projectiles. An idea of these spin rates may be obtained from Figure 1 which shows the spin rates required in the wind tunnel to duplicate the advance ratio of a 1 in 20 gun, for various size models, and for Mach numbers up to five.
- 14. In addition to these two major problems of instrumentation there was the problem of how to best perform the tests. The most straightforward way was to take data with all the test variables constant; namely, the Mach number, the angle of attack, and the rotational velocity. Since there were only fixed supersonic Mach numbers available for testing, the other two variables were of more concern. They could both be held constant and data taken, or one of them could be allowed to vary while data was recorded continuously. For the first exploratory tests the former method was used. This method proved much too slow and unrewarding and indicated the necessity of adopting one of the latter methods.
- 15. The statement of the two major instrumentational problems given above is overly simplified. Some of the other attendent problems were as follows. The strain gage balance could not be the usual type of balance but would require major modifications since it had to carry some sort of power to the spin motor, and since the motor had to be housed within the model, the balance sections were required to be located externally, behind the model.

This type of balance required a windshield to protect it from free stream air loads. The spin motor was required to have bearings that could endure both the high rotational speeds and the high radial loadings of the normal forces for sufficient lengths of time, without failure, to allow the data to be taken without frequent interruptions. The motor had to be such that it produced no "interference" or false reading of the electrical strain-gage balance. Since the models were of substantial length, the problem of dynamical or three-dimensional balance was critical, especially at the higher speeds. Good motor speed control and regulation was also desirable but it appeared unlikely that such would be the characteristics of motors of this size operating at such high speeds. Thus, more substantially, was the nature of the problem.

- 16. The very first attempts to perform Magnus measurements on spinning models were done at low subsonic speeds using commercially-available electric motors. The electric motors were mounted between the sting and the model in the simplest mechanical arrangement possible, the rotor being fastened to the sting and case attached to the model shell. The case and the model shell were then the rotating parts of the system. Subsequent tests were also attempted at supersonic speeds with electric motors but in both instances the data was bad. Several types of electrical motors were tried during this period but were found to be unsatisfactory due to the following reasons either singly or in combination:
- 1. the maximum spin rates attainable were insufficient to duplicate the advance ratios of gun-launched projectiles,
- 2. the heavy rotating parts of these motors had dynamical unbalances which excited strong vibrations in the entire model-balance-sting system rendering the force measurement system ineffective, and
 - speed regulation and control was poor.
- 17. The unsatisfactory performance of the available electric motors made it necessary to turn to some other kind of rotational power and the next most logical motor was an air turbine motor. Air turbine motors were known to have attained high rotational speeds in such applications as grinder motors, and could be built in very small sizes. The first type of turbine designed and constructed for Magnus models was the one described in reference (a.7). This type of air turbine was designed to exhaust the turbine air into the tunnel free-stream air at the rear of the sting, because at this time it was not known if there would be any aerodynamic interference on the model if this "external" air was dumped into the airstream near the model. Thus, the turbine supply air had to be introduced to the turbine through the sting and the exhaust air from the turbine also had to be carried out through the sting. This meant that the turbine had to be completely enclosed and airtight, and the sting had to have two air passages. This air turbine was built for a small finned model and was tried in the wind tunnel. This test was not successful due to the low torque of the motor being unable to overcome the torque of the canted fins in the airstream, and the smallness of the model provided no appreciable Magnus force.

- 18. A much simpler type of turbine which vented the exhaust air out of the base of the model was then devised to be used in the following manner. The turbine was allowed to power the model up to some high rotational speed before the intermittent wind tunnel blowing was started (see Description of Wind Tunnel section). The air to the turbine was then cut off and as the model's rotational speed began to diminish, the wind-tunnel blow was started. Data was continuously recorded as the model's rotational speed decayed. This technique was employed because it was still not known what the effect of releasing the exhaust air (from the turbine) out of the model's base, was on the external aerodynamics of the model. When the existence of such an effect was investigated by taking data both while the model was coasting down from some initially high spin (with no exhaust air being emitted from the model base) and while the model was being powered up to some high speed (with air coming out of the base), it was learned that there was no measureable difference in the data. This "coasting" technique was also slow and unproductive because the model rotational speed decayed very slowly necessitating several wind tunnel blows to cover the entire speed range. The "power up" technique, it was also learned, had several important advantages which could not be ignored. These advantages stemmed from the fact that the turbine's power was greatly increased during the wind-tunnel blow because the back pressure to the turbine was the wind-tunnel ambient pressure, only a few millimeters of mercury as compared to atmospheric pressure in the tunnel before the blow. Advantages of this type of procedure were that the entire speed range could be covered in a single blow, and that the maximum spin rate of the turbine was substantially increased.
 - 19. The early exploratory tests indicated certain facts which still define some of the instrumentational requirements up to the present time. It was learned, for instance, that the requirement of perfect three-dimensional balance cannot be overstressed as the quality of the test data seems to be directly related to the degree of freedom from vibration and unbalance. Another fact that was learned was that large models, which produced larger and more easily measurable forces, required lower spin rates to duplicate the advance ratios of gun-launched projectiles, and permitted the construction of balances which were more sensitive to the yaw forces while still retaining the strength in pitch to resist the normal forces.
 - 20. One piece of instrumentation that changed very little as more experience was gained was the strain-gage balance. From the calibrations of the balances, it was learned that they possessed a high degree of sensitivity to small steady state forces, and the wind-tunnel tests also showed that they were sensitive to the small fluctuations in the forces on the model due to air-stream fluctuations. The only essential improvement that was made on the strain-gage balances was to design them with low natural frequencies. This was done to minimize the possibility of high frequency resonances which might seriously damage the bearings or rotating parts.
 - 21. The major changes that occurred in the strain-gage readout instrumentation was the incorporation of the X_1 , X_2 , Y recorder into the system to obtain continuous traces of the Magnus force variation with either spin or angle of attack, and the change over from an AC to a DC strain-gage system.

Originally a 400 cycle AC voltage was used to power the strain gages, but during the period when electric motors were being tried as the source of rotational power, it was discovered that the electrical power fed to the motor would cause erratic readings of the strain gages, especially around 400 cycles per second. This was serious enough to warrant the change to a DC power source for the strain gages.

22. The instrumentation in use at the present time is fully discussed later in the section on instrumentation, and the techniques employed are more fully described in the section on test technique.

Objectives of the Test

- 23. The basic objective of the tests was to obtain experimental data on the effect of the nose shape on the Magnus characteristics of cylindrical bodies of fineness ratio five. It was desirable to know of such an effect, because it might aid in the design of projectiles with higher overall dynamic stability. Since the Magnus moment always contributes a destabilizing effect to the dynamical behavior of spinning projectiles (bodies alone), it would be advantageous to be able to design projectiles to have no Magnus moment. Elimination of the Magnus moment would be even more desirable if it could be accomplished by some small configurational change, such as a small change in ogival radius.
- 24. Another objective of these tests was to try to determine, if possible, what the <u>functional</u> variation of the Magnus characteristics with spin and angle of attack was. The last objective of these tests was to take data on the same configuration by two different wind-tunnel techniques, to check the data.
- 25. The utilization of the constant spin-variable angle of attack technique was attempted for additional reasons. This procedure would more closely duplicate the actual motion of a projectile, and would provide continuous force traces through zero degrees angle of attack, where the force vanishes.
- 26. The outcome of the attempt to utilize the constant spin-variable angle-of-attack technique was completely dependent on the degree of success of the servo-speed control's operation, since another objective of the tests was to determine the operational characteristics of the unit in controlling the model's rotational speed.
- 27. The five caliber long bodies were chosen because it might be expected that the effect of nose shape would be more pronounced on a short body than on a long body.

Description of NOL 40 x 40 cm Aeroballistics Tunnel No. 1

28. These tests were performed in the NOL 40 x 40 cm Aeroballistics Tunnel No. 1, an open jet, intermittent, blow-down tunnel. It should more correctly be called a "suck down" or "indraft" tunnel since it utilizes the pressure difference between the atmosphere and the "vacuum" of a storage sphere. The storage sphere is continuously evacuated by a set of three Demag sliding vane pumps which are automatically switched between parallel and series-parallel operation to minimize the pump down time. The tunnel can be operated over a range of fixed supersonic Mach numbers from 1.22 to 5.0 by inserting sets of nozzle blocks. The test section is an open jet in that the nozzle blocks and their side walls are enclosed in a small plenum chamber and the actual testing region is a space of uniform flow described by a wedge upstream of the nozzle exit and a pyramid down-stream of the nozzle exit. Downstream of the test section is an adjustable diffuser, designed to be set (in opening) to achieve the optimum pressure recovery in order to attain the longest blowing time. Located immediately behind the adjustable diffuser is a "fast acting" Polte valve which controls the starting and stopping of the tunnel. Blow times as long as 40 seconds at M = 3.24 can be obtained. A silica gel air dryer dries the air before it reaches the test section and is regenerated by auxiliary equipment when the tunnel is now blowing. A "cutaway" view of the supersonic wind-tunnel building can be seen in Figure 2 and a more complete description of the wind-tunnel facility can be found in reference (a.8).

Test Instrumentation

- 29. The test instrumentation, not including the models, can be broken down into five individual units, namely, the air "coaster" turbine motor, the external electric strain gage balance, the strain gage readout system, the frequency console, and the serve-speed control.
- 30. The air "coaster" turbine derives its name from the fact that it was designed to be used to "power" up the model to some high rotational speed before the wind-tunnel blow commenced and then allowed to "coast" down to zero rotational speed during the blow. In this way any effect of the airflow, required to power the turbine, on the strain gage balance would be avoided. This type of operation would also permit the exhaustion of the turbine air out of the base of the model. However, when it was learned that the decay in rotational speed during "coast down" was small, thus requiring several blows to cover the entire speed range, and that there was no noticeable effect of the turbine air on the strain gage balance, the "power up" of the model during the wind-tunnel blow was found to be more satisfactory (for several reasons discussed in the section on Introduction to the Problems of Wind-Tunnel Magnus Measurements). The construction of the air turbine can be seen in Figures 3 and 4. The turbine nozzle box is fixed on the stationary hollow sting while the turbine wheel is attached to the model shell. The air to power the turbine comes through the hollow sting to the nozzle box, passes through the nozzles, by the turbine blades, and finally, out the base of the model.

- 31. The turbine's rotational speed is indicated by the frequency of the sine wave generated by a small wire coil, mounted on the stationary turbine shaft, under the influence of a ring magnet attached to, and rotating with, the model shell.
- 32. The electric strain-gage balance used in these tests is similar to most pitch or yaw strain-gage balances with the single exception that it had to be hollow to allow for the passage of air supplied to the turbine. Its design was critical in that it must have sufficient strength to withstand heavy loads in the pitch plane and yet be sufficiently weak in the yaw plane to be sensitive to the small Magnus forces developed by the model. As was mentioned previously (in the Discussion of the Problems of Wind-Tunnel Magnus Measurement), at low rotational speeds the ratio of the normal force to the yaw (or Magnus) force can become exceedingly large, especially at high angles of attack. The construction of the balance was more intricate than a simple pitch or yaw balance in that a change over from a circular cross-section to a flat crosssection at the gage sections necessitated the fabrication of the balance in several pieces, since the cross-sectional variation of the hollow passageway could not be machined out of a single solid piece of metal. The separately machined pieces were welded together and then the external surfaces of the assembled balance were finished off on a milling machine. The strain gages were then mounted in the usual bridge circuit and the addition of the power and signal lead completed the balance construction. The balance behaved as the usual pitch or yaw balance in that each of the two gage sections were sensitive to bending moments about an electrical center located somewhere in the gage section. The location of the electrical centers and the sensitivities of the two gage sections were accurately determined in calibration. The slight tendency of the gages to respond to forces other than that for which they were intended, was nullified by electrical shunting (reference a.9).
- 33. The strain-gage readout system, broken down into its component parts consisted of: a wet cell battery to supply the power to the strain gages; a nulling and calibrating unit which was used to determine the electrical characteristics of the strain-gage balance (and could be used as a nulling type of strain indicator); a Leeds and Northrup D.C. amplifier-micro-voltmeter which was used both to read out the unbalance voltage of one of the bridges (indicative of the bending moment about the gage), and to amplify this unbalance voltage to a sufficient level for presentation to the recorder; a Leeds and Northrup X_1 , X_2 , Y recorder to permanently record the variation of the bending moments about the two strain-gage sections as functions of either the model rotational speed or the model angle of attack. A diagramatic sketch of the strain gage readout system may be seen in Figure 5, and photographs of the system are presented in Figures 6 and 7.
- 34. The frequency console was an assemblage of electronic units to convert the variable frequency generated by the tachometer pickup coil in the model into a direct current voltage proportional to that frequency. The console consisted of the following units: a General Radio Audio Oscillator; a Gates Amplifier; a General Radio Frequency Meter, a Waterman 3 inch Oscilloscope, and a Berkeley EFUT meter. The basic function of the console required the operation of only the Gates Amplifier to amplify the variable frequency signal

from the tachometer pickup coil, and the General Radio Frequency Meter to convert the variable frequency voltage into a D.C. voltage proportional to that frequency. This D.C. voltage was used as the input to the Y function on the recorder. The Berkeley EPUT Meter was used to monitor the tach signal frequency by counting the number of cycles per second (thus the designation Events Per Unit Time meter) and presented, in digital form on the front panel of the unit, the number it had sampled in that time interval. The Waterman Oscilloscope was used to visually monitor the quality of the signal from the tachometer pickup coil. Any malfunction of the pickup coil could easily be detected on both the oscilloscope and the EPUT meter. The function of the General Radio Audio Oscillator in the system was to provide accurate, fixed frequencies to define rotational speed limits on the Y function of the recorder. The Y function on the recorder was linear with frequency (presented to the console) and thus required only two defining limits, a zero frequency and a "maximum" frequency. The frequency readout system had one shortcoming. The system could not respond to frequencies below 18 cycles per second. This was due both to a limitation of the General Radio frequency meter and to the low output voltage of the pickup coil at low frequencies. A diagramatic sketch of the frequency console is presented in Figure 8 and the unit may be seen in Figures 6 and 7.

35. The Servo-Speed Control was a unit designed and built at the NOL, for the expressed purpose of controlling the rotational speed of any of the several sizes of air turbines in use for Magnus testing. It is an experimental model to determine how effectively a high-speed air turbine can be controlled and regulated with a relatively simple apparatus such as this. Part of the actual wind-tunnel testing was devoted to determining the characteristics and the degree of control provided by this unit. The control was constructed using a relatively simple circuit conceived by Dr. W. A. Menzel at the NOL using as the major components, a Brown servo-amplifier, a Brown servo-motor, and a standard 1/2 inch pipe valve. The control circuit may be seen in Figure 9 and a photograph of the complete control unit may be seen in Figure 10. The primary function of the Servo-Speed Control was to hold the rotational speed constant at some fixed value while the aerodynamic loading on the model varied such as occurs when the model's angle of attack is changed. The secondary function was to be able to set the model's rotational speed at arbitrary fixed values. From the use of the control during the wind-tunnel tests it was learned that the model's rotational speed could easily be held constant to 12% at speeds between 80 cycles per second and 500 while the model's angle of attack was varied between ±10 degrees. A fine degree of control was attained after some experience in adjusting the supply pressure and the Servo-Speed Control settings to satisfy the needs of the turbine. The setting of the rotational speed to some nominal value by the speed control was not so successful as was the speed regulation in that when the wind tunnel blow was started, the model would always speed up to some higher value than was set before the blow. This can be readily explained when one considers that when the wind tunnel is blowing, the ambient pressure surrounding the model is only a few millimeters of mercury. Thus, the back pressure to the turbine is extremely low, the power of the unit is considerably multiplied and the

turbine speeds up. Nevertheless, the regulating effect of the control would take hold at the new higher speed and precisely regulate the rotational speed. With a little experience, this speed-up could be reckoned with and compensated for beforehand to achieve a speed setting close to the desired one.

Models

- 36. All of the models tested in this investigation had a length-todiameter ratio of five, the noses being two body diameters in length and the cylindrical after-bodies three body diameters in length. The only configurational variation was in the nose shapes. Of the six noses tested three formed a systematic variation in ogival radius. These three noses were: a cone nose of infinite ogival radius, a secant ogive nose with an ogival radius of 8.5 body diameters, and a tangent ogive nose with an ogival radius of 4.25 body diameters. Each of the remaining three noses had no relationship to any other in the group but was tested because it was an "interesting" shape. One of the remaining three noses was, the Haack-Sears nose, a nose whose profile was determined by the equation $\frac{\chi}{r} = \left(1 - (1 - \frac{\chi}{r})^2\right)$ and possessed the theoretically minimal wave drag for a given length and volume (reference a.10). Another nose shape was the "typical projectile" nose, which was basically a cone with a blunted tip - in this case, a spherical tip - and a rounded shoulder. The blunted nose was desirable from the standpoint of fuse installation and operation and the rounded shoulder was characteristic of many varieties of service ammunition. The last nose tested was the cone nose with artificial roughness applied to a small region near the tip. Number 100 emery grit was chosen as the artificial roughness in an attempt to produce a completely turbulent boundary layer over the entire model. The size of this grit was chosen on the basis of yet unpublished data obtained from tests on boundary layer transition conducted at the Jet Propulsion Laboratory, Pasadena, California. The variety of nose shapes tested were expected to yield results which would be representative of most practical supersonic nose shapes. All of the noses are good supersonic shapes in that none have high drag.
- 37. The models were machined out of magnesium, the lightest common metal, to the dimensions given in Figure 11. Photographs of the model parts are presented in Figures 12 to 18. The models were fabricated with the tolerances on the concentricity of the rotating circular surfaces as small as was possible using ordinary machine shop equipment. The precision of manufacture and the lightness of the models reduced the level of any dynamic unbalance to an insignificant level.
- 38. The model size, three inches in diameter and fifteen inches long, was determined by test section considerations. The models were the largest that could be tested in the test section of the Mach 1.75 nozzle at angles of attack as high as 22 degrees. The moment reference center was taken to be 3.04 body diameters back from the nose.

Wind Tunnel Test Techniques

- Magnus forces and moments are dependent on several aerodynamic variables which influence the viscous flow about the model (i.e. the structure of the boundary layer and the vortices shed on the lee side of the body). Some of these variables are, the Mach number, the Reynolds number, the rotational velocity, the angle of attack, the surface roughness, the pressure and temperature gradients, and in the case of the wind tunnel, any nozzle disturbances and air turbulence. Experimental Magnus data as functions of these variables are necessary for the understanding of the Magnus mechanism and to establish a satisfactory Magnus theory, which at the present time does not exist. Within a larger program of the Aeroballistic Research Department of the Naval Ordnance Laboratory, the effect of nose shape (which primarily affects the pressure gradient) on the Magnus forces and moments of a 5-caliber long body was examined. This investigation was attempted to provide some insight as to how to improve the free-flight characteristics of some missiles under development. If a large orderly variation in the Magnus characteristics could be determined, then this variation might be exploited to yield body shapes with no adverse Magnus effects.
- 40. The test of the six models was performed at a Mach number of 1.75 only in order to limit the quantity of data obtained. At this Mach number, the dynamic pressure in the wind tunnel is sufficiently high to produce appreciable Magnus forces and because of the exceptional flow quality of the nozzle used to produce this Mach number.
- 41. The major portion of this test was carried out with the constant angle of attack and variable spin method. This technique is not troubled by the appearance of gyroscopic forces (since the model is held fixed in space), nor is the control or regulation of the rotational speed of any concern so long as the frequency recording system has a sufficiently fast response. The test procedure employing this technique is as follows: the angle of attack is set to some nominal value before the wind-tunnel blow; the wind tunnel blow is started and once flow is established, high pressure air is admitted to the air turbine; the model accelerates from zero rotational speed up to some high rotational speed; during the blow, continuous traces of the variation of the bending moments about the two yaw gages are permanently recorded as functions of the rotational speed; finally when the high rotational speed is reached, the wind-tunnel blow is stopped.
- 42. The constant rotational speed, variable angle of attack technique was employed for one configuration. As was stated previously, this part of the test was of an exploratory nature in that it was not known how effective the Servo-Speed Control would operate. The procedure employed for this type of test was as follows: the model's angle of attack was set at some extreme value and the model was spun up to some nominal value of rotational speed; the tunnel blow was started causing the model's rotational speed to increase; after a few seconds the Servo-Speed Control took hold and kept the rotational speed constant; once it was noticed that the rotational speed had

stabilized, the angle of attack was varied, while the angle of attack was varied, the variation of the bending moments about the two yaw gages was permanently recorded as functions of angle of attack; when the other extreme value of angle of attack was reached, the wind-tunnel blow was stopped. This technique produces gyroscopic forces, which have to be eliminated in the data reduction.

Coefficients

43. The Magnus force and moment coefficients, as originally defined by ballistic investigations, are:

$$K_{F} = F/i e^{VD^{3} k_{P}}$$
 $K_{T} = -T/e^{VD^{4} k_{P}}$
see (reference a.6)

The terms in the above equations are defined in the List of Symbols. The angle, 1, is the angle between the axis of symmetry (length axis) of the projectile and the free-stream velocity vector and corresponds to the aero-dynamic angle of attack. The inclusion of the rotational vector, i, is to denote that the Magnus force, F, occurs at right angles to the plane in which 1, is contained. It is assumed that these coefficients are linear functions of both spin and angle of attack when the time-position-attitude measurements of the ballistic ranges are evaluated. The present investigation shows that this assumption is erroneous.

44. The yaw or side force coefficient and the yawing moment coefficient as used for static wind tunnel measurements are respectively

$$C_{Y} = Y/qA$$

$$C_{W} = V/qAD$$

Throughout this report, these coefficients will be used to define the forces and moments produced by the Magnus effect. It should be noted that the difference between these coefficients and the ballistic Magnus coefficients is that these coefficients are not non-dimensionalized for spin or angle of attack.

45. Another non-dimensional quantity which describes the helical angle of a point on the surface of the body as it flies through the air (same as the lead of a screw thread) is the advance ratio. It is:

Advance Ratio = (pD/2V).

If the wind-tunnel yaw force and yawing moment coefficients are linear with both spin are angle of attack, then these coefficients may be non-dimensionalized for advance ratio (spin) and angle of attack into wind-tunnel Magnus coefficients which may be readily compared with the ballistic coefficients. These are:

$$c_{Y_{p_{\alpha}}} = \frac{c_{Y}}{\alpha} (\frac{2V}{pD}) = \frac{16}{\pi} K_{F}$$

$$C_{\psi p_{CL}} = \frac{C_{\psi}}{\alpha} \left(\frac{2\dot{v}}{pD}\right) = -\frac{16}{\pi} K_{T}$$

46. If the wind-tunnel measurements reveal that the Magnus is non-linear with both rotational velocity and angle of attack, then another procedure must be followed to obtain coefficients which may be compared with the ballistic coefficients. To obtain wind-tunnel Magnus coefficients in this case, the advance ratio of the projectile must be known. The rotational velocity required to duplicate this advance ratio in the wind tunnel must be determined. At this spin rate, the wind-tunnel Magnus coefficients may then be computed:

$$c_{Y_{p_{\alpha}}} = \left(\frac{d}{d\alpha}\right)_{\alpha} = 00 \left(\frac{c_{Y}}{p}\right) \left(\frac{2V}{p}\right)$$

$$C_{\gamma p_{\alpha}} = \left(\frac{d}{d\alpha}\right)_{\alpha} = O^{\alpha}\left(\frac{C_{\gamma}}{p}\right) \left(\frac{2V}{D}\right)$$

The Magnus coefficients obtained by this method are probably closest to "true" Magnus coefficients, because they are most representative of the instantaneous forces acting on a projectile. These coefficients consider the spin as a constant (which is true for short distances along the projectile's trajectory), and are determined for zero degrees angle of attack (defining the initial Magnus force behavior).

Data Reduction and Accuracy

47. The raw data obtained for the constant angle of attack-variable spin type of blow were in the form of recorder traces of the yaw gage readings (indicative of the bending moments about the yaw gages) versus the rotational speed. Sample traces of this type may be seen in Figure 19. From these traces the side force coefficient, Cy, and the yawing moment coefficient, Cy, may be computed (by the equations presented in Appendix I and reference a.9) as functions of the rotational speed. In this data reduction, the fewest number of data points were taken that would adequately define the data. In some cases, where the traces were clearly linear, only two points from each trace were read. These two points were, the zero rotational speed point and the maximum rotational speed point. The zero rotational speed point was considered as the point of "zero" Magnus and any reading of the strain gages at this point was due to some small static yaw angle. Thus, for a linear trace only the values of the Magnus coefficients at the maximum

spin were computed. For the majority of traces, many points along the traces had to be read because the traces were clearly non-linear. One source of error in reading the traces was due to the fact that the traces did not start from exactly zero rotational speed, but commenced at approximately twenty revolutions per second. This was due to the inability of the frequency console to respond to low frequencies and the tachometer generator to produce a sufficient signal voltage at these low frequencies. All of the traces had to be faired to zero rotational speed in order to determine the "zero" Magnus point. This fault in the instrumentation introduced a reader error in the data which is probably most evident in flaws in the array of the basic data plots.

- 48. The raw data obtained for the constant rotational speed-variable angle of attack type of blow were of the form of traces of the strain-gage readings versus the angle of attack. Sample traces of this kind may be seen in Figure 20. On this type of trace, the angle of attack was linear between the two extremities of the trace. The extremities of the trace were a maximum positive angle of attack and a maximum negative angle of attack. To reduce the data, a "zero" Magnus point had to be deter ned and this was taken to be the interpolated zero degrees angle of attack point. Any reading of the strain gages at zero degrees angle of attack was attributed again to a static yaw angle and also to a small precessional force. Tare readings had to be subtracted from the readings of the traces and these were the variations of the no-spin strain gage readings with angle of attack, which were small.
- 49. The readings obtained from both types of traces were punched into IBM cards and reduced to coefficient form by IBM 650 computing machines used by the Applied Mathematics Division of NOL.
- 50. There were no corrections applied to the data. A prection to the indicated angle of attack due to the deflection of the balance under the pitch plane loads is normally warranted, but requires the measurement of the pitch plane loads. However, previous experience with this balance showed this correction to be negligible. The aerodynamic trim has also been left in the data since the subtraction of the trim angles would not alter the form of the data but would only shift them to the origin. This was not done because of the considerable work involved.
- 51. In the case of the constant spin, and variable angle of attack method a precessional moment is present and must be accounted for in the data reduction. The magnitude of this precessional moment depends on the moment of inertia of the rotating parts, the rate of change in the angle of attack, and the rotational velocity. The rotational velocity for the run utilizing this technique varied between about 80 revolutions per second to about 510 revolutions per second, but the rate of change of the angle of attack was only about one degree per second. However, if the rate of change in angle of attack was a constant, then the precessional force must be a constant, and it would be properly deducted from the total force reading (leaving only the Magnus force reading) by the data reduction procedure described

above. Also if the direction of the angle of attack variation were reversed then the direction of precessional force would be reversed. The effect of rotational speed on this precessional force did show up in the data in a small change in "zero Magnus" point; the largest "zero Magnus" point corresponding to the highest rotational speed. That the precessional moments have been eliminated from the data is substantiated by the good comparison of the data taken in this fashion with the data taken by the constant angle of attack, variable spin technique, a technique for which no precessional moment is present.

52. A probable error analysis for these tests was attempted, but the results were approximately one order of magnitude smaller than the error determined from what repeat points were taken. This was probably due to the fact that all of the variables which affect the data could not be accounted for in the probable error analysis. Some of these variables are: tunnel air fluctuations, vibrations of the model-sting system, the aerodynamic trim (which is still present in the data), and reader error in the fairing and reading of the recorder traces. These factors, while small in themselves are probably significant contributors to the total error when one considers the smallness of the Magnus forces. To indicate a level of measurement accuracy the following RMS values of the residuals (based on repeat points) are presented, for a spin rate of 600 rev./sec.

	α = 40	$\alpha = 8^{\circ}$	α = 18°
E _{CY}	±.02¼	±.011	±.006
E _C _{\psi}	±.021	±.016	±.010

If these errors are referred to the measured coefficients then the percentage errors are

	$\alpha = 4^{\circ}$	$\alpha = 8^{\circ}$	$\alpha = 18^{\circ}$
c _Y	± 19.2	<u>+</u> 2.45	±0.75
C ¥	±38.9	±5.37	±1. 52

^{53.} The system of coordinate axes defining the signs of the forces and moments are presented in Figure 21.

Results

- The primary results of these tests are presented in the form of data tables and graphical plots of the side force coefficients and the yawing moment coefficients versus rotational speed or angle of attack. This presentation is made in the same general order in which the data were taken. In other words, if the raw data were obtained by the constant angle of attack, varying spin technique, then the computed coefficients are presented as functions of the spin, with the constant angles of attack as a parameter. The tabulated data are presented at the end of the report with an explanatory sheet. The primary data plots for the six configurations, as obtained using the constant angle of attack, variable spin technique are presented in Figures 22 to 33 in the following configurational order: the cone nose; the secant ogive nose; the tangent ogive nose; the Haack-Sears nose; the typical projectile nose; and lastly the cone nose with No. 100 grit. These graphical plots are alternately, the side force coefficients and the yawing moment coefficients (plotted against the rotational speed) for the respective configurations. It was possible to present all of the measured coefficients (of one kind) for each configuration on a single graph. Thus, the presentation of this data required only two plots for each configuration. The data obtained for the single run using the typical projectile nose, and employing the constant rotational speed-variable angle of attack technique, could not be as conveniently presented without completely obscuring the data around zero degrees angle of attack, and required Figures 34 to 55 to clearly present these results. In each of these figures are presented the side force coefficient, the yawing moment coefficient, and the center of Magnus plotted against the angle of attack for constant values of the spin.
- 55. The presentation of some of the important effects revealed by the data necessitated a number of crossplots and comparison plots. The effect of nose shape (for three spin ates - 153, 305 and 458 revolutions per second) is revealed in Figures 56 to 64. In Figures 56, 59, and 62, the side force coefficients for all of the nose shapes are plotted against angle of attack for each of the three speeds respectively. The yawing moment coefficients are presented in Figures 57, 60, and 63, in the same form. Figures 58, 61, and 64 present the center; of Magnus versus absolute value of the angle of attack, for all of the configurations. For these plots the data has had the aerodynamic trim angle of attack removed in order to accurately determine center of Magnus values at small angles of attack. If the trim were not removed, the center of Magnus determinations at small angles of attack would be meaningless. The good agreement of the centers of Magnus between plus and minus angles of attack point up the symmetry of the data. From each of the three sets of three figures an effect of the ogival radius may be obtained, at each constant rotational speed, if we consider the three noses that have the systematic variation in ogival radius. Figure 65 presents the effect of ogival radius on the Magnus characteristics of bodies of fineness ratio 5. In this figure are presented the Magnus force coefficient, $C_{Y_{TY}}$, the Magnus moment coefficient, $C_{\psi_{TX}}$, and the center of Magnus

as functions of the ogival radius at a spin rate of 305 revolutions per second. Figure 66 presents the effect of spin on the initial Magnus characteristics of the typical projectile nose as determined by "slopes" at

zero degrees angle of attack from the many traces obtained by the constant spin, variable angle test technique.

56. A comparison of the results obtained for identical test conditions on the same configuration by employing the two different test techniques is presented in Figures 67 and 68. These figures contain the crossplots of C_Y and C_W for the typical projectile nose versus angle of attack (as presented in Figures 59 and 60, p = 305 rev./se.), and the same coefficients as obtained by the constant spin variable angle of attack technique (namely the data as presented in Figures 40, 41, and 53, at approximately the same spin rate).

Discussion

- 57. The examination of the graphical plots of the coefficients, C_v and C_w, is not sufficient by itself to reveal the effects of nose shape variation. As a matter of fact, there is so much data in these figures (Figures 22 to 33) that differences between the various noses are actually obscured. The comparison crossplots, Figures 56 to 64, give a better picture of the nose effect. The plotted points in these figures are values which have been interpolated in the tabulated results. From Figures 56, 59, and 62 (note change in scale of Figure 62), the crossplots of the side force coefficients, the following general effects, for each spin rate, may be seen:
- 1. the force coefficients follow approximately a cubical relationship with small and moderate angles of attack, then generally reaching either a peak or a plateau at some high angle of attack;
- 2. there is a progressive increase in the Magnus force as the ogival radius decreases (proceeding from cone nose to tangent ogive nose);
- 3. the Haack-Sears nose appears to have the highest maximum Magnus forces of all the noses tested;
- 4. the typical projectile nose seems to have about the same forces as the secant ogive nose;
- 5. there appears to be little if any difference between the forces developed on the cone nose and on the cone nose with No. 100 grit;
- 6. there is an almost linear relationship of coefficient with rotational speed.

From Figures 57, 60, and 63, the crossplots of the yawing moment coefficients, it may also be seen that:

1. the various noses produce appreciable differences in the Magnus moment behavior at small angles of attack - these differences include reversals in sign;

- 2. there are small differences in the maximum values of the moment coefficient at high angles of attack, although there appears to be a slight increase in moment coefficient with diminution of the ogival radius;
- 3. the tangent ogive nose and the Haack-Sears nose appear to have similarly shaped moment coefficient curves at small angles of attack;
- 4. the typical projectile nose has about the same Magnus moment characteristics as the secant ogive nose at both high and low angles of attack;
- 5. the application of the No. 100 grit to the cone nose appears to have changed the Magnus moment coefficients appreciably at small angles of attack, but not at all at the high angles of attack;
- 6. all of the Magnus moment coefficients appear to have reached a peak or plateau at the high angles of attack;
- 7. the maximum moment coefficient values exhibit an almost linear dependence on spin rate, however there appears to be almost no dependence of the moment coefficient at small angles of attack once a spin rate of about 305 revolutions per second has been exceeded.

From Figures 58, 61, and 64, the crossplots of the centers of Magnus, it may be seen that:

- 1. the centers of Magnus for all the configurations (including the cone nose with grit) at high angles of attack are almost the same;
- 2. at small angles of attack, there appears to be very strong effect of nose bluntness on the centers of Magnus with the blunter configurations having the more rearward centers of Magnus;
- 3. the application of the grit to the cone nose moves the center of Magnus from ahead of the nose rearward to approximately one caliber ahead of the base, at small angles of attack. (Since schlieren photographs of the boundary layer were not obtained it is not conclusively established what changes in boundary layer were produced by the application of the grit. The two changes that the grit could produce are: the shifting of the transition point from somewhere aft on the body to the very tip of the nose, and the simple thickening of an already turbulent boundary layer. The large change in center of Magnus due to the application of the grit may be evidence that the former effect is probably occurring along with strong variations of the distribution of the Magnus forces along the body.)
- h. there appears to be no effect of spin on the centers of Magnus at large angles of attack and only the centers of Magnus of the cone nose and the secant ogive nose appear to be markedly affected by the spin rate at small angles of attack.

- 58. The effect of ogival radius on the initial Magnus characteristics of bodies of fineness ratio 5 may be seen in Figure 65, in which the Magnus force coefficient, C_{Yp_x} , the Magnus moment coefficient, C_{Yp_x} , and the centers of Magnus at zero degrees angle of attack (determined from the slopes of the crossplots of Figures 59 and 60) are plotted against ogival radius. With decreasing ogival radius the Magnus force coefficient increases, the Magnus moment coefficient decreases and even becomes negative, and the center of Magnus moves rearward from ahead of the nose to behind the center of gravity. This figure was presented to emphasize the substantial differences in the Magnus coefficient, produced by the different nose shapes, at low angles of attack.
- 59. Examination of the data obtained for the constant spin, variable angle of attack test technique (Figures 34 to 55) reveals effects at very small angles of attack that are not ordinarily discernible by the constant angle of attack, variable spin test technique. During the actual testing, the original angle of attack range was between plus and minus ten degrees, but the unusual variations in the recorder traces that occurred at very small angles of attack (between plus and minus one degree) indicated very pronounced movements of the center of Magnus, and prompted the exploration of these unusual effects at a greater sensitivity and on a reduced scale (between plus and minus five degrees). The inspection of these data shows that at very small angles of attack:
 - 1. the Magnus force coefficient can be very non-linear;
- 2. the Magnus moment coefficients exhibit "reversals" and even "double reversals;"
- 3. the centers of Magnus are extremely unsteady, being very sensitive to changes both in spin rate and angle of attack. The argument that these very small angle effects may be due to "vagaries" of the instrumentation can be refuted by the good repeatability of the data (from repeat traces at two sensitivities), by the symmetry of the data, and by the agreement of the data taken by two different techniques (to be discussed later). The author had some reason to suspect that mechanical vibration of the modelturbine-sting system might be producing these unusual small angle of attack effects, however, a detailed investigation proved this suspicion to be groundless. Since the typical projectile nose was the only configuration tested in this fashion (because of model difficulties), it is not known whether the many variations in the very small angle of attack data are peculiar only to this configuration or whether this behavior is representative of many, or all, configurations. One of the most interesting features of these data (Figures 34 to 55) is the behavior of the center of Magnus at zero degrees angle of attack as the spin changes. It can be seen by successively examining the figures that there is a profound movement in the center of Magnus as the spin is increased, moving from behind the center of gravity at low spin rates (90 rev./sec.) to far ahead of the nose at medium spin rates (300 rev./sec.), then back to a position just ahead of the nose at high spin rates (500 rev./sec.). The center of Magnus determinations at zero degrees angle of attack were made by using the slopes of the traces at zero degrees

angle of attack, because at zero degrees angle of attack the side forces and moments themselves become zero. The effect of spin rate on the initial Magnus characteristics of the typical projectile nose configuration is evident in Figure 66. It can be seen that as the spin is increased the Magnus force coefficient goes to zero; the Magnus moment coefficient changes sign, peaks, then begins to decrease; and the center of Magnus moves off the body to some point a great distance ahead of the body, then moves rearward again. The fact that the moment coefficient reaches a maximum and remains finite in value, while the force coefficient goes to zero, can only be explained by the presence of a couple. This would mean that there must be two effectively independent systems of aerodynamic activity at work on the body producing this effect.

- 60. The comparison of the data obtained by the two different test techniques (Figures 67 and 68) indicates that the two sets of data are in good agreement. It should be pointed out that the aerodynamic trim is still present in the data, and the comparison might be improved if the trim were removed. The author feels that each test technique has certain advantages depending on what is desired most from the test. For very small angles of attack, the constant spin-variable angle of attack technique is much more revealing than the other technique. It also yields Magnus coefficients at zero degrees angle of attack. The constant angle of attack-variable spin technique requires less instrumentation and uses a simpler data reduction procedure.
- 61. From the consideration of the results of these tests certain general conclusions may be inferred. One conclusion, that verifies present opinion, is that at small angles of attack the nature of the boundary layer is the most important factor in the behavior of the Magnus. It also appears that any disturbance introduced to alter the behavior of the boundary layer, such as spin, nose shape variations or surface roughness, may produce very great changes in the force distribution over the body (and the corresponding variation in the moment and center of Magnus). It might be expected that the effect of nose shape on Magnus would be more pronounced on a short body than on a long body, because of the longer run of boundary layer on the longer body, but there is no evidence to prove or disprove this.
- 62. Another conclusion that may be drawn from these tests is that the force distribution on the body at very small angles of attack is the result of two systems of aerodynamic activity. A possible picture of this activity might be that at low angles of attack, the viscous flow on the sides of the body might be combined into two effectively discrete vortex systems similar to those that occur at high angles of attack. These two vortices would be, of course, very close to the body, possibly completely within the attached boundary layer. If the strengths of the two vortices were nearly the same, the net force would be close to zero, but if the circulation distribution of these vortices along the body were different, a finite moment might be the result.

- 63. A third conclusion that can be made is that body disturbances, such as mentioned above, have little influence on the distribution of the forces on the body at high angles of attack. The constancy of the centers of Magnus at high angles of attack between all of the configurations, may indicate that the shed vortices on the lee side of the body have about the same paths and circulation distributions for all of the configurations, but the differences in the maximum forces indicate that the different shapes are able to impart different amounts of (total) circulation, by their rotation, to the shed vortices.
- 64. A possible explanation for the peaking of the Magnus force might be that the shed vortices are moving away from the body as the angle of attack is increased, and, when the body reaches a certain "critical" angle the vortices are so far away from the rotating body that the body cannot effectively communicate circulation to them. After this "critical" angle of attack is passed the force tends to diminish.
- 65. As was stated earlier (in the Historical Sketch) there exist only two papers that attempt to predict theoretically the Magnus characteristics of three dimensional bodies. Unfortunately, most of the conditions of this theory, namely, a long body with a laminar boundary layer in a subsonic incompressible flow at small angles of attack, are violated by the conditions of these tests. Thus, no valid comparison with this theory could be expected. Nevertheless, the Martin-Kelley theoretical Magnus coefficients are included in Figure 65 for academic reasons.

CONCLUSIONS

- 66. From the consideration of the results of these tests, the following specific conclusions are evident for a body of fineness ratio 5 at a Mach number of 1.75 and a Reynolds number of 5.5 million.
 - 1. The shape of the nose has a profound effect on:
 - a. the magnitude of the Magnus force at high angles of attack
 - b. the behavior of the Magnus moment at small angles of attack
 - c. the location of the center of Magnus at low angles of attack.
 - 2. The shape of the mose has a lesser effect on:
 - a. the magnitude of the Magnus force at small angles of attack
 - b. the magnitude of the Magnus moment at high angles of attack.
- 3. The shape of the nose has a very small effect on the center of Magnus at high angles of attack.

- 4. The rotational velocity has a profound effect on the initial $(\alpha = 0 \text{ degrees})$ Magnus characteristics of the typical projectile nose configuration. Whether this strong spin dependency is representative of many or all configurations remains to be demonstrated.
- 5. The application of artificial roughness to the tip of the nose caused very substantial changes in the Magnus moment and the center of Magnus at small angles of attack.
- 6. No present theory can adequately predict the Magnus characteristics of short bodies at supersonic speeds.
- 7. The constant rotational speed-variable angle of attack test technique has demonstrated that:
- a. the data obtained by this technique agrees well with the data obtained by the previous technique of holding the angle of attack constant and taking data while the rotational speed was varied
- b. this technique determines the small angle of attack Magnus characteristics more satisfactorily than the previous technique
- c. this technique affords an opportunity of determining the initial Magnus characteristics, namely those at zero degrees angle of attack
- 8. The Servo-Speed Control Unit, designed and built for the purpose of effectively controlling the rotational speed of the air turbine was a success.

References

- (a) Walker, G. T. Spiel und Sport. Encyclopadie der Mathematschen Wissenschaften, IV 9, p 136 ff, 1900.
- (b) Newton, Isaac. Philosophical Transactions. 6, 1672.
- (c) Robins, B. Mathematical Tracts of Gunnery. p 200 ff, London: 1761.
- (d) Robins, B. New Principles of Gunnery. London: 1842.
- (e) Poisson, S. D. Recherches sur le mouvement des projectiles.
 Paris: 1839.
- (f) Magnus, Gustav. <u>Ueber die Abweichung der Geschosse</u>. Abhandlungen der Berliner Akademie, 1852, or Poggendorfer Annalen, Vol. 88, p 1, 1853.
- (g) Strutt, J. W. (Lord Rayleigh). On the Irregular Flight of a Tennis

 Ball. Messenger of Mathematics. 7, 14, 1877, also Scientific Papers,

 Vol. I, p 344, Cambridge: 1899.
- (h) Glauert, H. Aerofoil and Airscrew Theory. Cambridge: At the University Press. New York: The Macmillan Company, 1926.
- (i) Goldstein, Sidney (editor). Modern Developments in Fluid Dynamics. Vol. 1 and 2, Oxford at the Clarendon Press: 1938.
- (j) Rauscher, Manfred. Introduction to Aeronautical Dynamics. p 244-252, New York: John Wiley & Sons Inc., London: Chapman & Hall Ltd. 1953.
- (k) Lafay, M. Sur l'inversion du phenomenon de Magnus. Conte Rendu 151, 867, 1910.
- (1) Lafay, M. Contribution experimentale a l'aerodynamique du cylinder. Revue Mechanique 30, p 431 ff. 1912.

 (m) Fowler, R. H., E. G. Gallop, C. N. H. Lock and H. W. Richmond.
- (m) Fowler, R. H., E. G. Gallop, C. N. H. Lock and H. W. Richmond.

 The Aerodynamics of a Spinning Shell.

 of the Royal Society. London: 1920.
- (n) Fowler, R. H. and C. N. H. Lock. The Aerodynamics of a Spinning Shell. Part II. Philosophical Transactions of the Royal Society. London: 1921.
- (o) Ackeret, J. Neuere Untersuchungen der Aerodynamischen Versuchsanstalt in Göttingen. Zeitschrift für Flugtechnik und Motorluftschiftahrt. Feb. 14, 1925. translated in NACA Technical Memorandum No. 323.

 July 1925.
- (p) Flettner, Anton. Anwendung der Erkenntnisse der Aerodynamik zum Windvortrieb von Schiffen. Zeitschrift für Flugtechnik und Motorluftschiffanrt, pp 52-63. Feb. 14, 1925.
- (q) Prandtl, Ludwig. Magnuseffekt und Windkraftschiff. (a lecture delivered before Physikalische Gesellschaft, Göttingen. November 17, 1924). Die Naturwissenschaften, Vol. XIII, pp 93-108, June 2, 1925. translated in NACA Technical Memorandum No. 367, June 1926.
- (r) Ackeret, J. Das Rotorschiff und seine physikalischen Grundlagen.
 Gottingen: Vanderhoeck and Ruprecht. 1925.
- (s) Betz, A. Der Magnus Effekt, die Grundlage der Flettnerwalze.

 Zeitschrift des Vereins Deutscher Ingenieure, January 3, 1925.

 translated in NACA Technical Memorandum No. 310, April 1925.

NAVORD Report 4425

(t) Bairstow, L. The Rotorship and Aeronautics. Nature, No. 2891, Vol. 115, pp 462-464, March 28, 1925.

(u) Rizzo, F. The Flettner Rotor Ship in the Light of the Kutta-Joukowski Theory and of Experimental Results. NACA Technical Note No. 228. October 1925.

(v) Ahlborn, F. Der Magnus Effekt in Theorie und Wirklichkeit. Zeitschrift für Flugtechnik und Motor luftschiffahrt, pp 642-653, December 28, 1929. translated in NACA Technical Memorandum No. 567.

(w) Reid, Elliot G. Tests of Rotating Cylinders. NACA Technical Note No. 209, December 1924.

(x) Wolff, E. B. Voorloopig Onderzoek naar den invloed van een draaiende rol aangebracht in een vleugteugprofiel. Report A 96 of the Rijkstudiedienst voor de Luchtvaart, Amsterdam. Reprinted in De Ingenieur, No. 49, December 6, 1924. translated in NACA Technical Memorandum No. 309, March 1925.

(y) Wolff, E. B. and C. Koning. Beschouwingen naar aanleiding van de grenslaagmetingen aan het model met draaiende rol. Report A 130 of the Rikjstudiedienst voor de Luchtvaart, Amsterdam. reprinted in De Ingenieur, December 25, 1926. translated in NACA Technical

Memorandum No. 424, August 1927.

(z) Wolff, E. B. and C. Koning. Tests for Determining the Effect of a Rotating Cylinder Fitted into the Leading Edge of an Airplane Wing. NACA Technical Memorandum No. 354, March 1926.

(a.1) Prandtl, Ludwig and Oskar Tietjens. Kinematographische Strömungsbilder. Die Naturwissenschaften, Vol. 13, pp 1050-1053. translated in NACA Technical Memorandum No. 364, May 1926.

(a.2) Kelley, J. L. and E. J. McShane. On the Motion of a Projectile with Small or Slowly Changing Yaw. Ballistic Research Laboratory Report No. 446, January 1944.

(a.3) Turetsky, R. A. Reduction of Spark Data. Ballistic Research Laboratory Report No. 684, 1948.

(a.4) Martin, John C. On Magnus Effects Caused by the Boundary Layer
Displacement Thickness on Bodies of Revolution at Small Angles
of Attack. Ballistic Research Laboratory Report No. 870, June 1953.

(a.5) Kelly, Howard R. An Analytical Method for Predicting the Magnus
Forces and Moments on Spinning Projectiles. U. S. Naval Ordnance
Test Station Technical Memorandum No. 1634, 12 August 1954.

(a.6) McShane, E. J., J. L. Kelley and F. V. Reno. Exterior Ballistics.
The University of Denver Press, 1953.

(a.7) Cornett, Raymond. Design of a Miniature High Speed Air Turbine for Spinning Wind Tunnel Models. Masterate Thesis, Department of Mechanical Engineering, University of Maryland, 1955.

(a.8) Lightfoot, James R. The Naval Ordnance Laboratory Aeroballistics Research Facility. NAVORD Peport 1079, 15 August 1950.

(a.9) Shantz, Irving, Bernard D. Gilbert and Charles E. White. NOL Wind Tunnel Internal Strain-Gage Balance Systems. NAVCRD Report 2972, 21 September 1953.

(a.10) Sears, W. R. On Projectiles of Minimum Wave Drag, Quarterly of Applied Mathematics, Vol. IV No. 4, pp 361-366, January 1947.

Appendix

Data Reduction Equations

$$C_{Y} = -A_{Y} (l_{3} - l_{3_{0}}) + B_{Y} (l_{1} - l_{1_{0}})$$

$$C = A (l_{3} - l_{3_{0}}) + B (l_{1} - l_{1_{0}})$$

$$A_{Y} = K_{3}/q A (X_{3} - X_{1_{1}})$$

$$B_{Y} = K_{1_{1}}/q A (X_{3} - X_{1_{1}})$$

$$A = K_{3}(X - X_{1_{1}})/qAD(X_{3} - X_{1_{1}})$$

$$B = K_{1_{1}}(X_{3} - X_{1_{1}})/qAD(X_{3} - X_{1_{1}})$$

$$Q = (8/2) (P/P_{0}) P_{0} M^{2}$$

$$A = (7D^{2}/1)$$

Center of Magnus = $(1 - X_{\psi}/D + C_{\psi}/C_{Y})$ (D/L)

At zero degrees angle of attack:

$$C_{\text{enter of Magnus}} = \left[1 - X_{\psi}/D + (dC_{\psi}/d\alpha)/dC_{Y}/d\alpha)\right] (D/L)$$

The Magnus Coefficients are:

$$C_{Y_{p\alpha}} = (d/d\alpha) (C_{Y/p}) (2V/D)$$

$$C_{\psi_p} = (d/d\alpha) (C_{\psi/p}) (2V/D)$$

$$V = M (Q/Q_0) Q_0$$

$$\lambda_0 = \sqrt{8R T_0}$$

NAVORD Report 4425

TABULATED DATA

Run No.	Configuration	Type of Run			
1 4	Secant Ogive Nose	constant α, variable rpm			
2	Cone Nose	constant α , variable rpm			
3	Tangent Ogive Nose	constant α, variable rpm			
4	Haack-Sears Nose	constant α , variable rpm			
5	Typical Projectile Nose	constant α , variable rpm			
7	Typical Projectile Nose	constant rpm, variable α			
8	Cone Nose with No. 100 Grit	constant α, variable rpm			

Explanation of Data Listing

	Magnus C.P. (% lengt from bas	6004.	0.294.	.5483	₹699.
	भूग	1 000°	.0063	.0161	4620
	<i>*</i>	0600.	.0168	9020	.0212
Run/Blow 1/01	Spin Rate (rps)	26.5	63.2	10.0	136.8
Group No.	Indicated Angle of Attack	2.00	2.00	2.00	2,00
Program Identification 241	Point No.	20	03	す	92

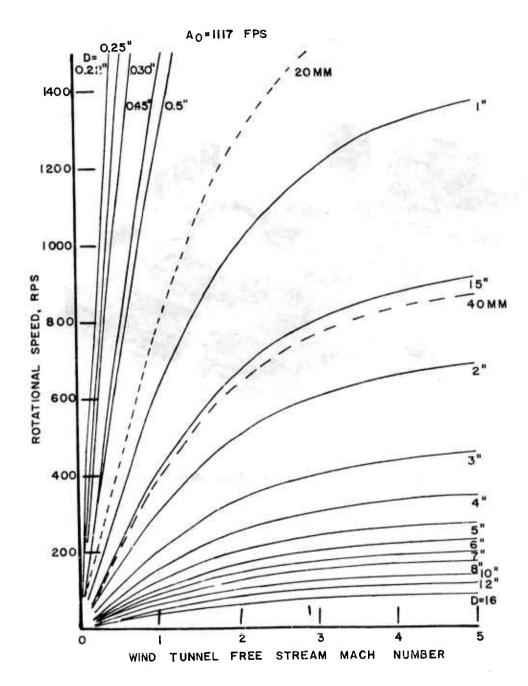


FIG.I ROTATIONAL SPEED VS WIND TUNNEL MACH NUMBER FOR VARIOUS SIZE MODELS (ADVANCE RATIO = I IN 20)

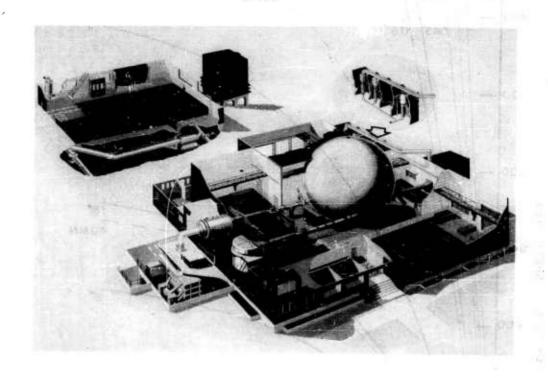


FIG. 2 CUTAWAY DRAWING OF THE NOL WIND TUNNEL BUILDING

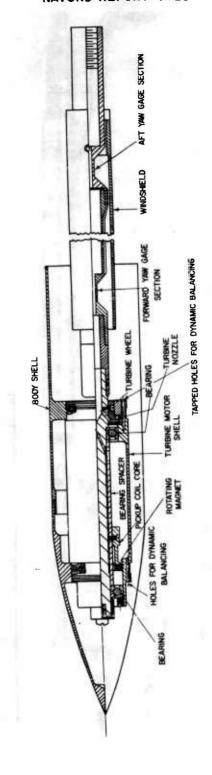


FIG. 3 ASSEMBLY DRAWING OF THE MODEL-AIR TURBINE UNIT

FIG. 4 EXPLODED MODEL-AIR TURBINE UNIT

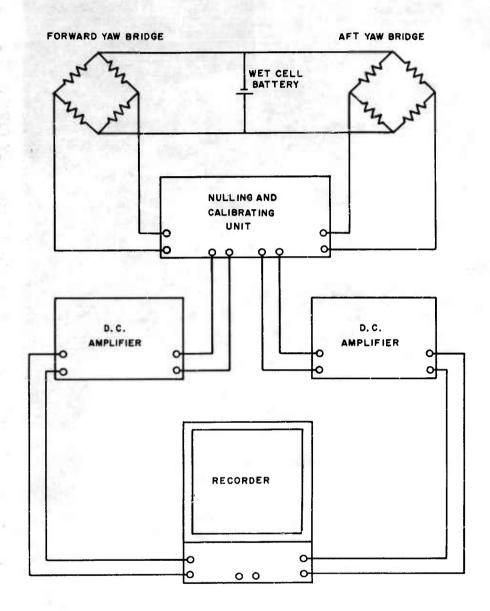


FIG. 5 DIAGRAMATIC SKETCH OF THE STRAIN GAGE READOUT SYSTEM

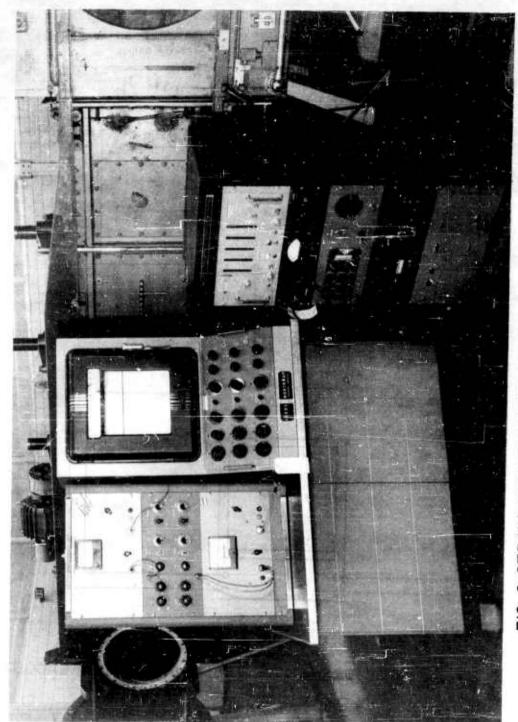


FIG. 6 STRAIN GAGE READOUT SYSTEM AND FREQUENCY CONSOLE

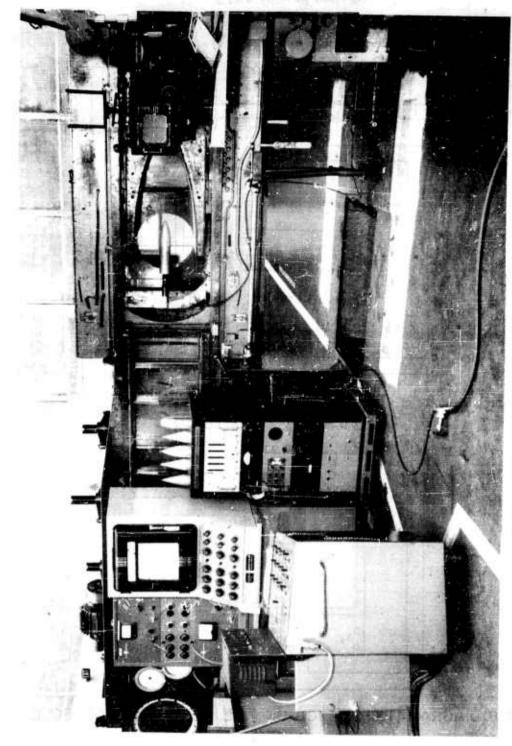


FIG. 7 WIND TUNNEL SET-UP

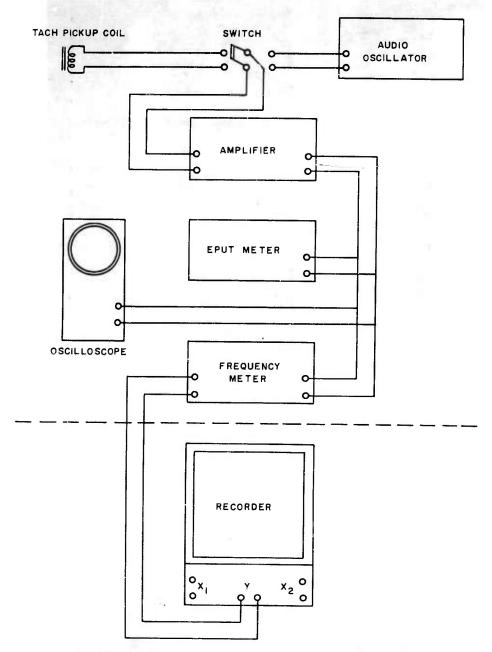


FIG. 8 DIAGRAMATIC SKETCH OF THE FREQUENCY CONSOLE

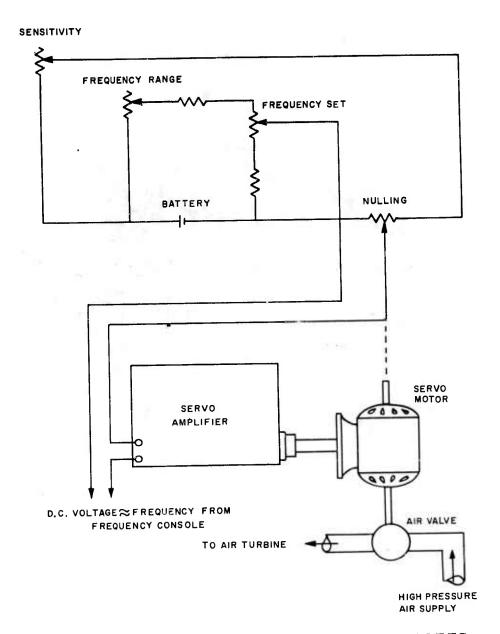


FIG. 9 SCHEMATIC DIAGRAM OF THE SERVO-SPEED CONTROL

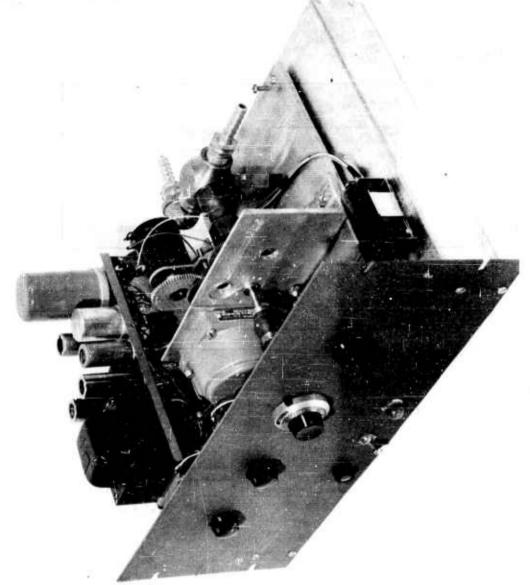
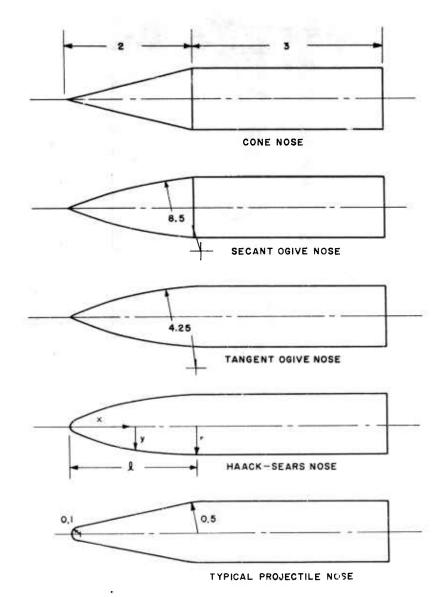



FIG. 10 SERVO-SPEED CONTROL

ALL DIMENSIONS GIVEN IN BODY DIAMETERS (D = 3.0 INCHES)

FIG. II MODEL DIMENSIONS

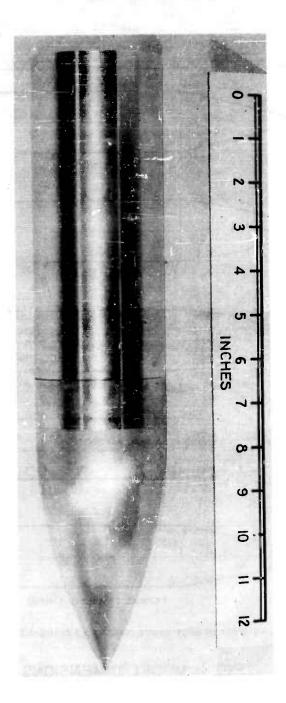


FIG. 12 ASSEMBLED MODEL WITH THE TANGENT OGIVE NOSE

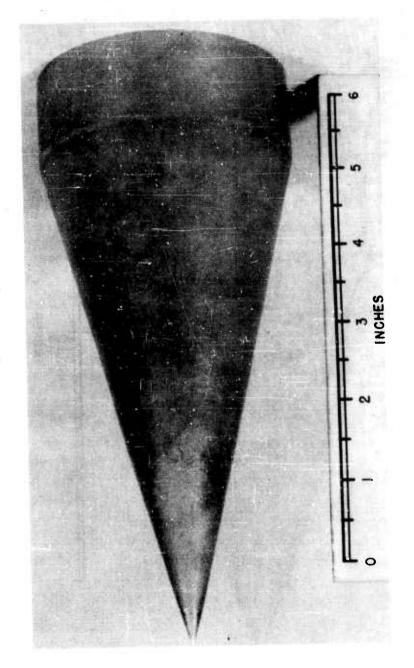


FIG. 13 CONE NOSE

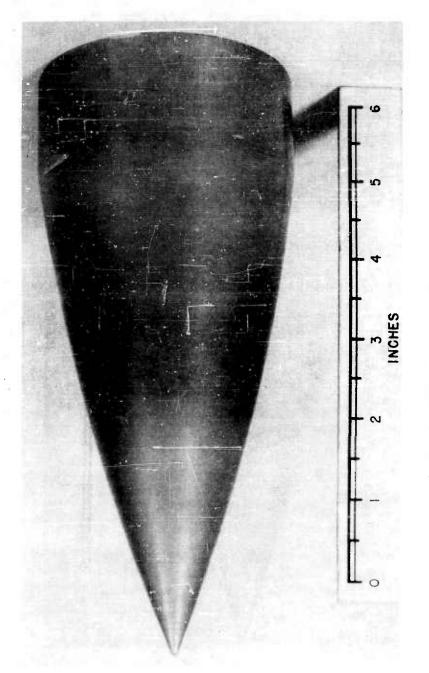


FIG. 14 SECANT OGIVE NOSE

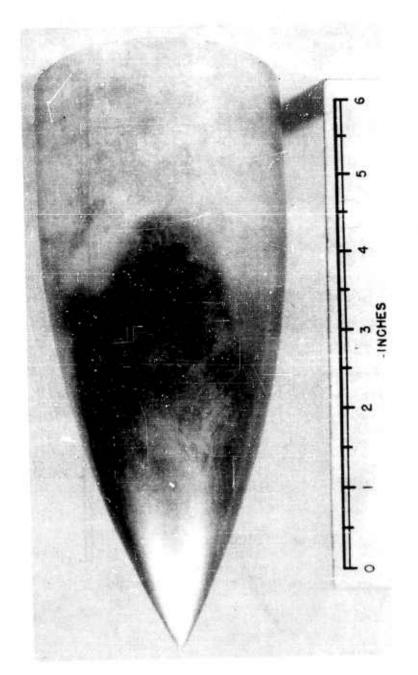


FIG. 15 TANGENT OGIVE NOSE

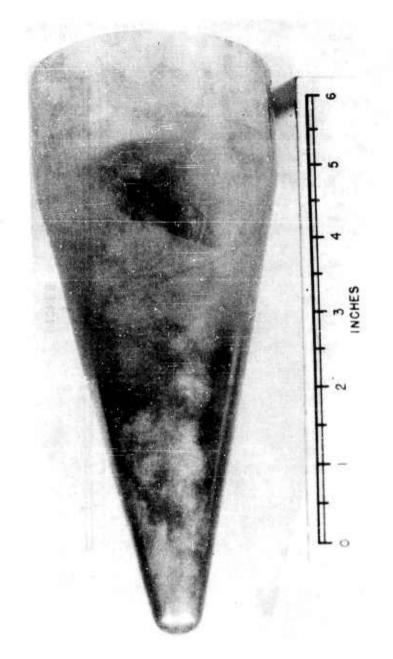


FIG. 17 TYPICAL PROJECTILE NOSE

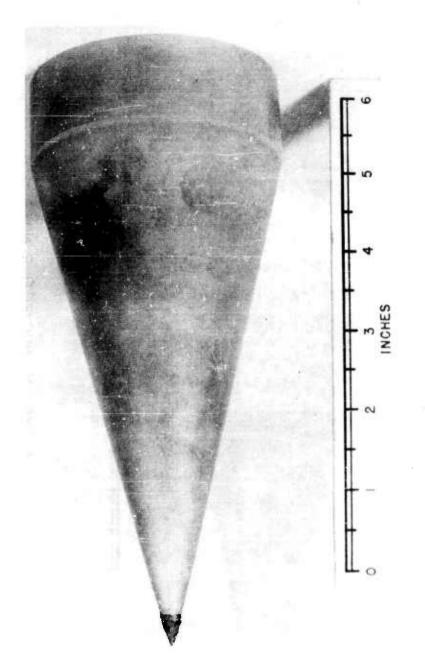


FIG. 18 CONE NOSE WITH NUMBER 100 GRIT

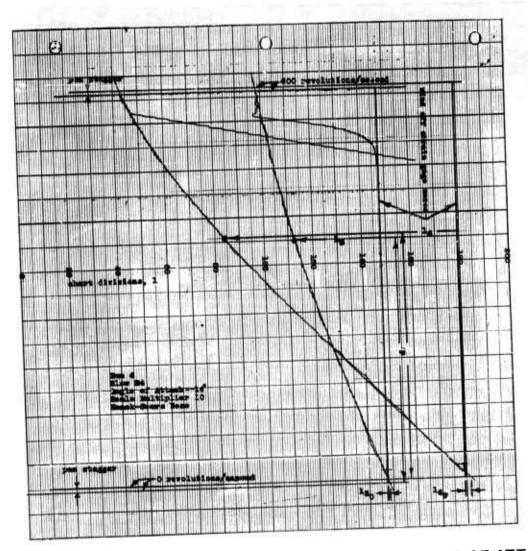


FIG. 19 SAMPLE TRACES OF THE CONSTANT ANGLE OF ATTACK, VARIABLE SPIN TYPE OF BLOW

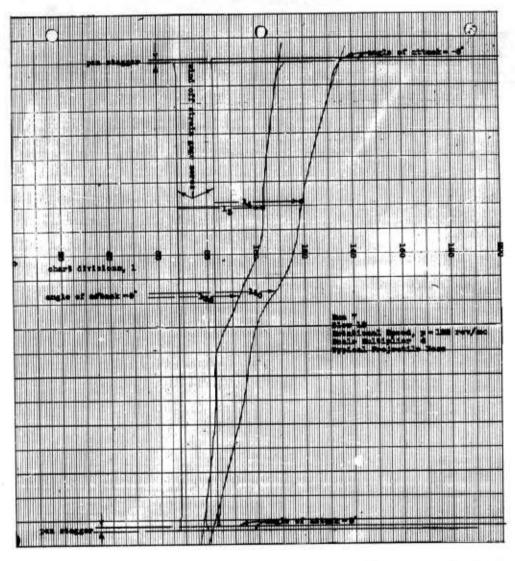
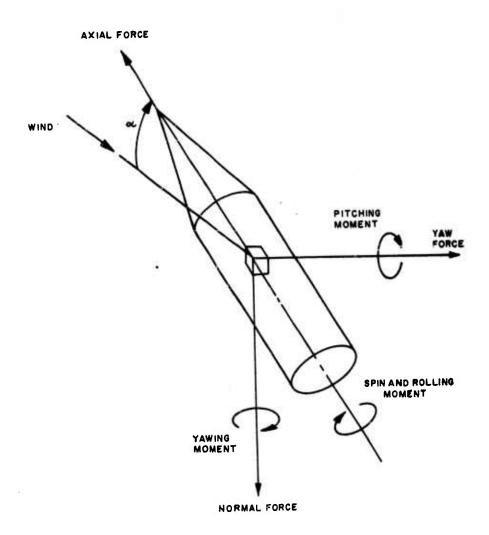



FIG. 20 SAMPLE TRACES OF THE CONSTANT SPIN, VARIABLE ANGLE OF ATTACK TYPE OF BLOW

ARROWS INDICATE POSITIVE DIRECTION

FIG. 21 FORCE AND MOMENT COORDINATE SYSTEM

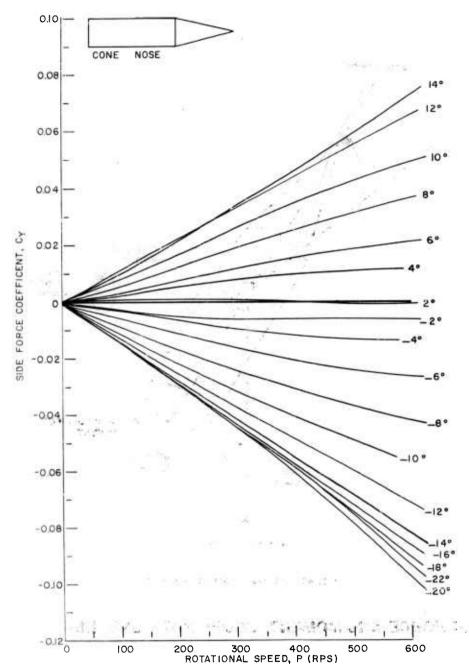


FIG. 22 SIDE FORCE COEFFICIENT, C_{γ} , VS ROTATIONAL SPEED, P, CONE NOSE

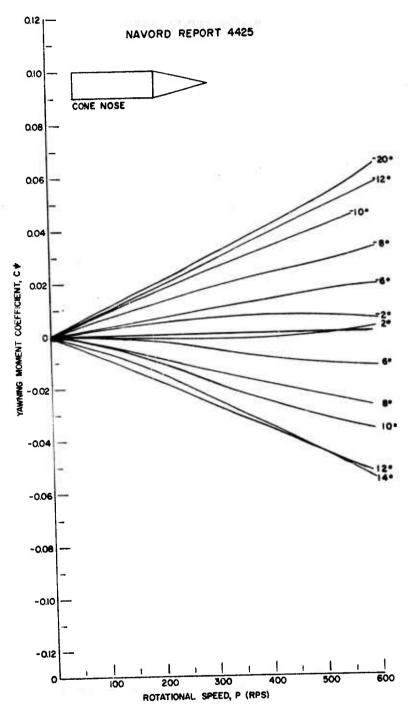


FIG. 23 YAWING MOMENT COEFFICIENT, C_{ψ} , VS ROTATIONAL SPEED, P, CONE NOSE

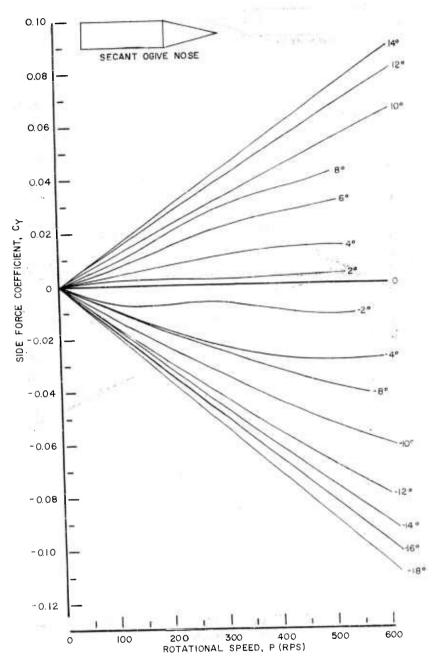


FIG 24 SIDE FORCE COEFFICIENT, CY, VS ROTATIONAL SPEED, P, (RPS)-SECANT OGIVE NOSE

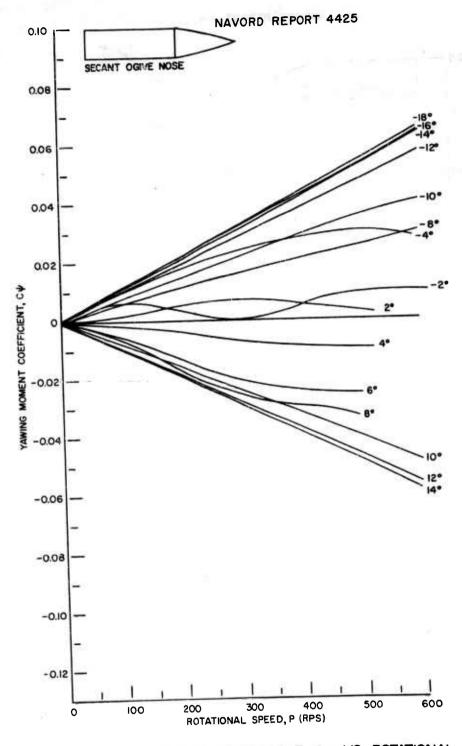
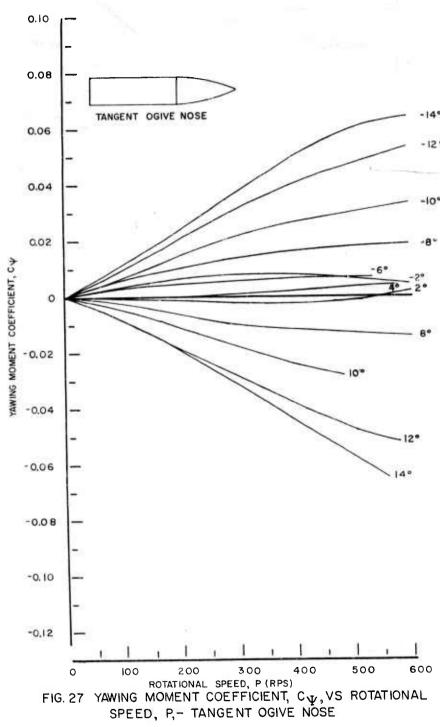



FIG. 25 YAWING MOMENT COEFFICIENT, $C\psi$, VS ROTATIONAL SPEED, P,-SECANT OGIVE NOSE

FIG. 26 SIDE FORCE COEFFICIENT, C_{γ} , VS ROTATIONAL SPEED, P-TANGENT OGIVE NOSE

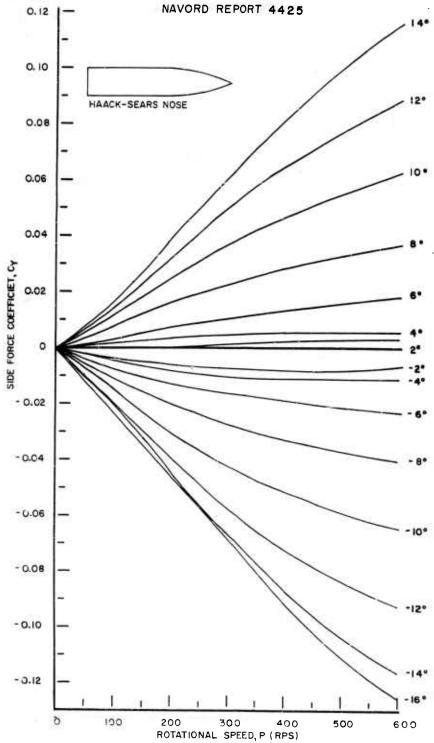


FIG. 28 SIDE FORCE COEFFICIENT, CY VS ROTATIONAL SPEED, P,-HAACK-SEARS NOSE

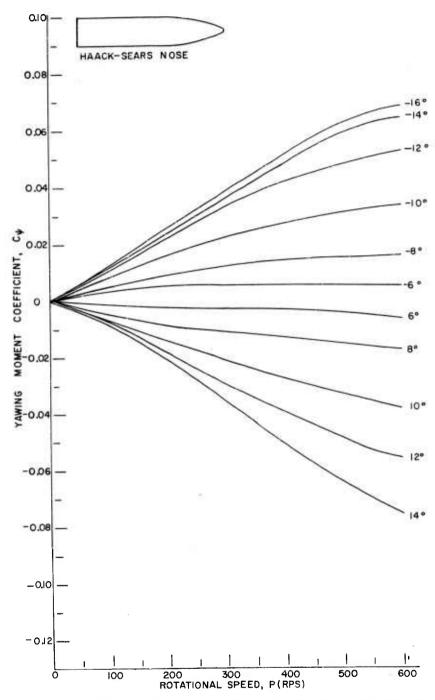


FIG. 29 YAWING MOMENT COEFFICIENT, C_{ψ} VS ROTATIONAL SPEED, P,-HAACK-SEARS NOSE

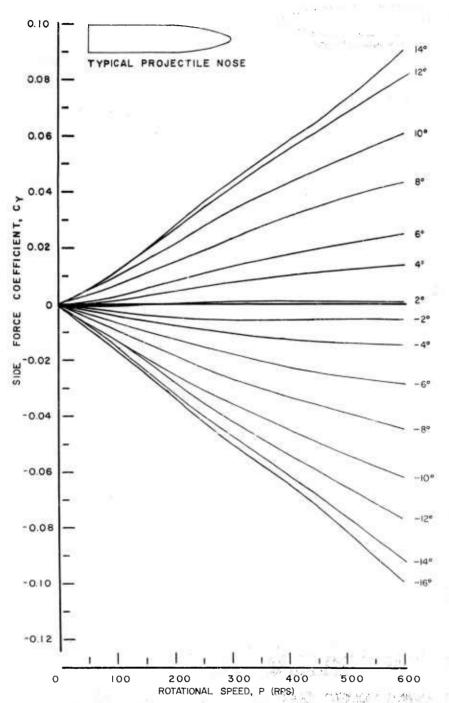


FIG. 30 SIDE FORCE COEFFICIENT, $C_{\rm Y}$, VS ROTATIONAL SPEED, P, TYPICAL PROJECTILE NOSE

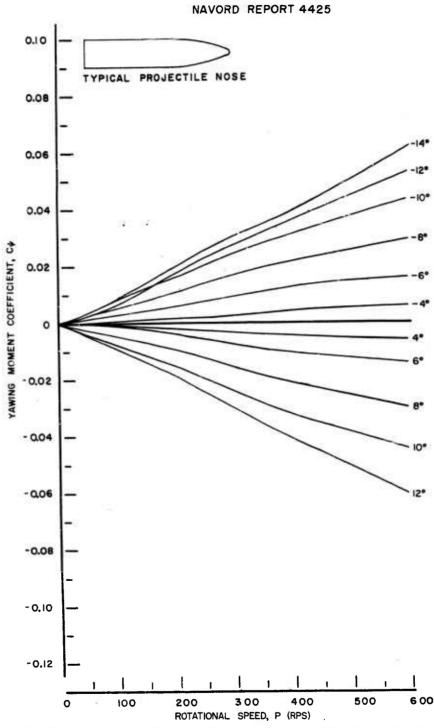


FIG. 31 YAWING MOMENT COEFFICIENT, C_{ψ} , VS ROTATIONAL SPEED, P, TYPICAL PROJECTILE NOSE

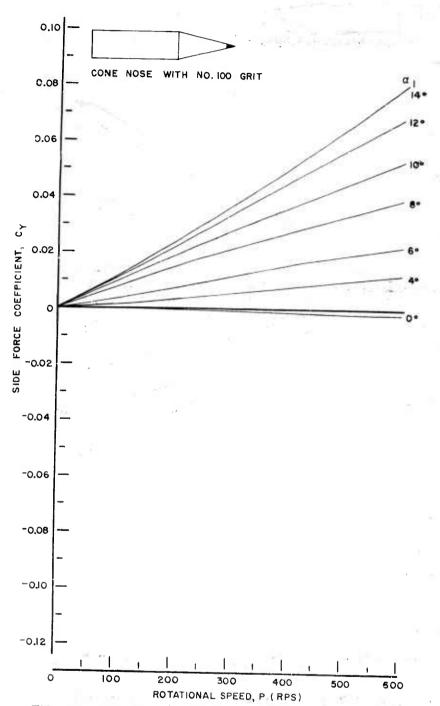


FIG. 32 SIDE FORCE COEFFICIENT, CY, VS ROTATIONAL SPEED, P,-CONE NOSE WITH NO. 100 GRIT

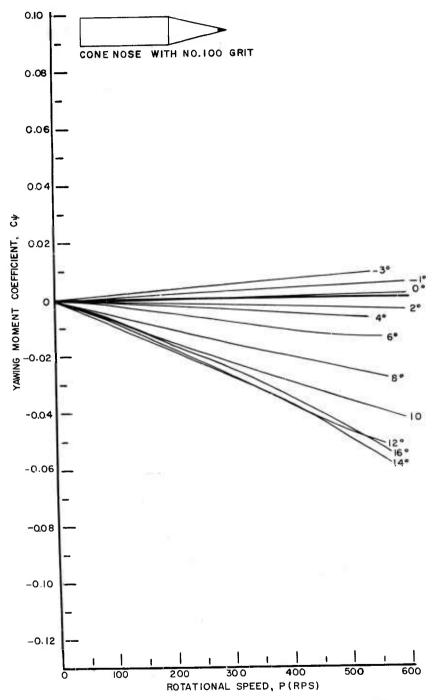


FIG. 33 YAWING MOMENT COEFFICIENT, C ψ , VS ROTATIONAL SPEED, P,-CONE NOSE WITH NO. 100 GRIT

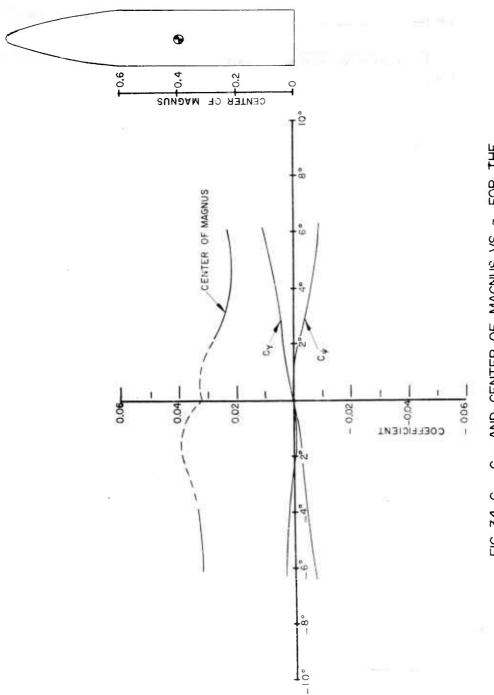
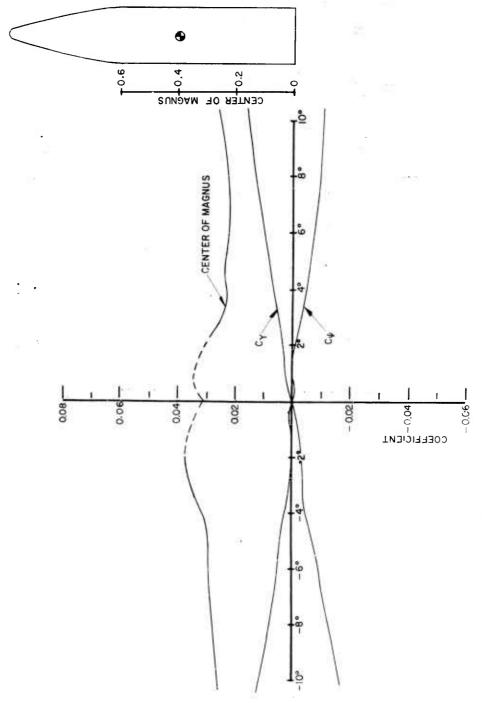



FIG. 34 C $_{\gamma}$, C $_{\psi}$ AND CENTER OF MAGNUS VS $_{\alpha_{\parallel}}$ FOR THE TYPICAL PROJECTILE NOSE (P=125 RPS)

43

FIG. 35 C $_{\gamma}$, C $_{\psi}$, AND CENTER OF MAGNUS VS α_l FOR THE TYPICAL PROJECTILE NOSE (P=126 RPS)

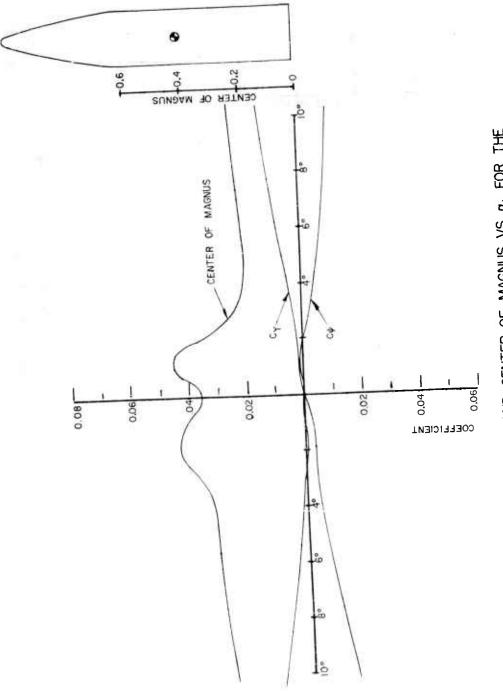
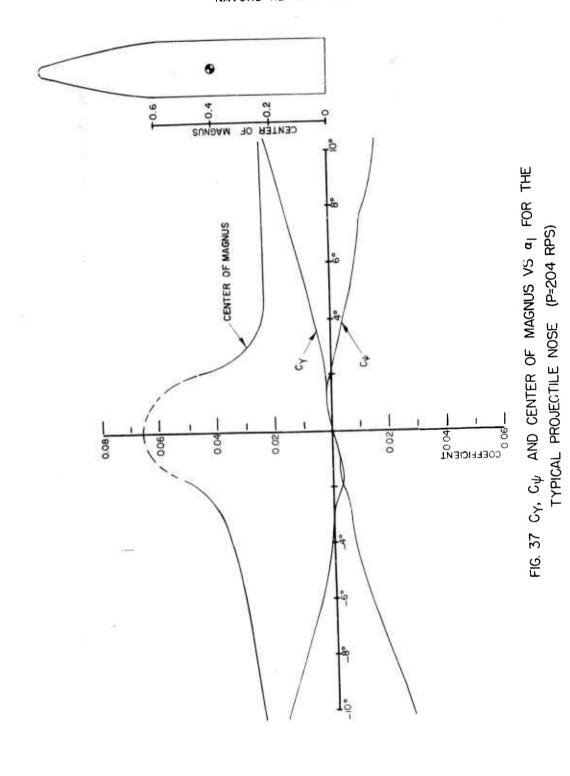



FIG. 36 $C_{\gamma},~C_{\psi}$, and center of magnus VS α_{l} FOR THE TYPICAL PROJECTILE NOSE (P=126 RPS)

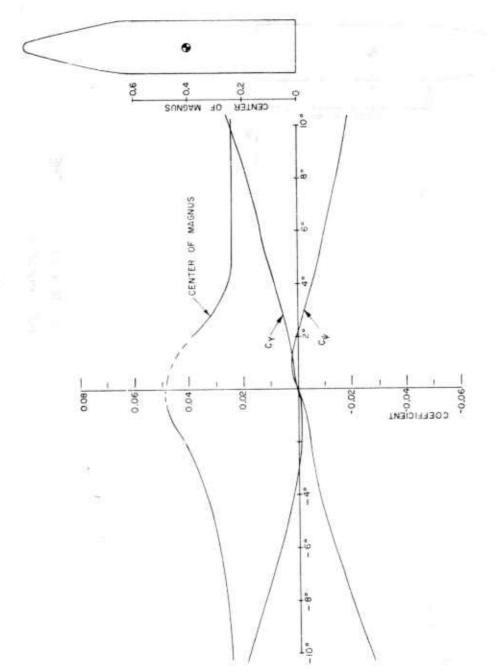


FIG. 38 C $_{\gamma},$ C $_{\psi},$ AND CENTER OF MAGNUS VS $_{\alpha_1}$ FOR THE TYPICAL PROJECTILE NOSE (P=203 RPS)

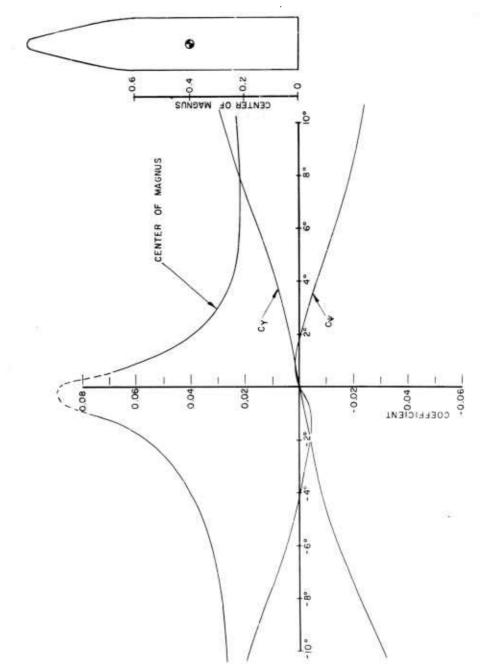
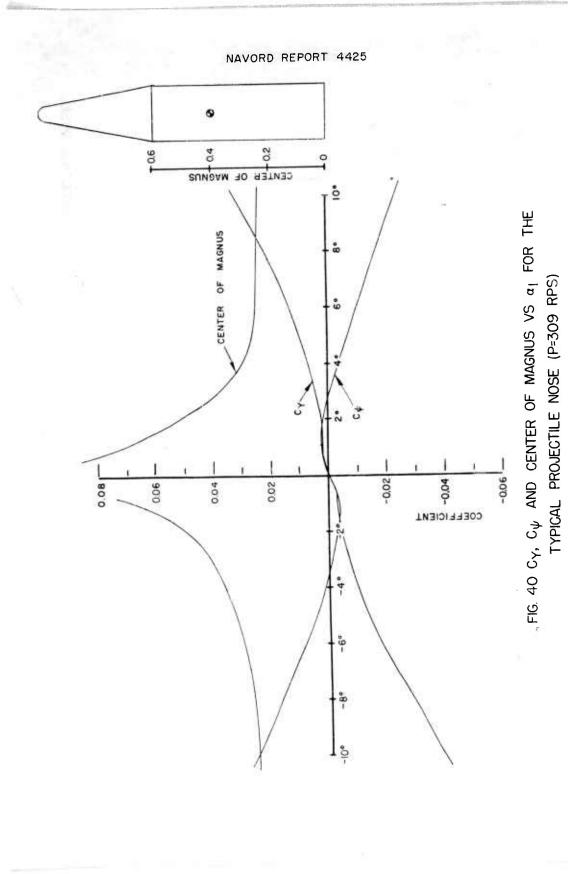



FIG. 39 C $_{\gamma},$ C $_{\psi}$ AND CENTER OF MAGNUS VS $_{\alpha_1}$ FOR THE TYPICAL PROJECTILE NOSE (P=255 RPS)

2

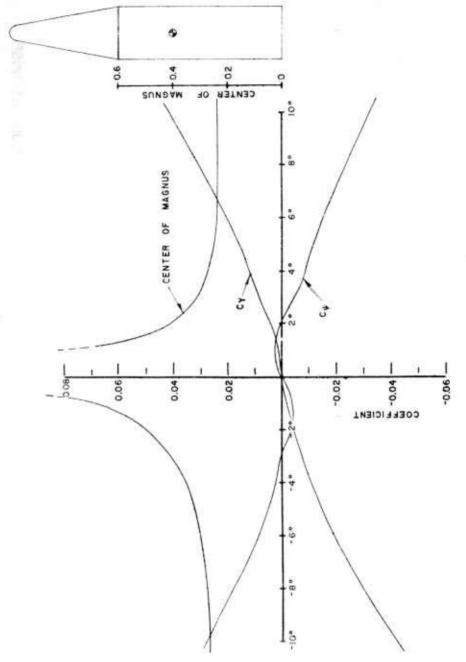


FIG. 42 CY,C. AND CENTER OF MAGNUS VS a, FOR THE TYPICAL PROJECTILE NOSE (P=370 RPS)

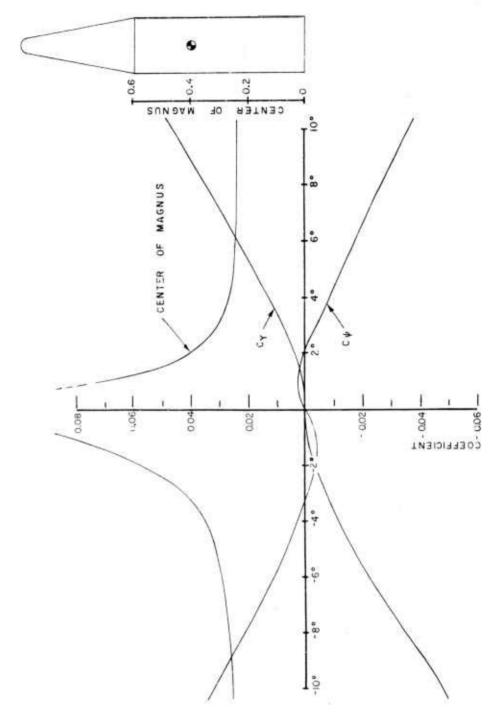


FIG. 43 C $_{\gamma}$, C $_{\psi}$ AND CENTER OF MAGNUS VS α_l FOR THE TYPICAL PROJECTILE NOSE (P=432 RPS)

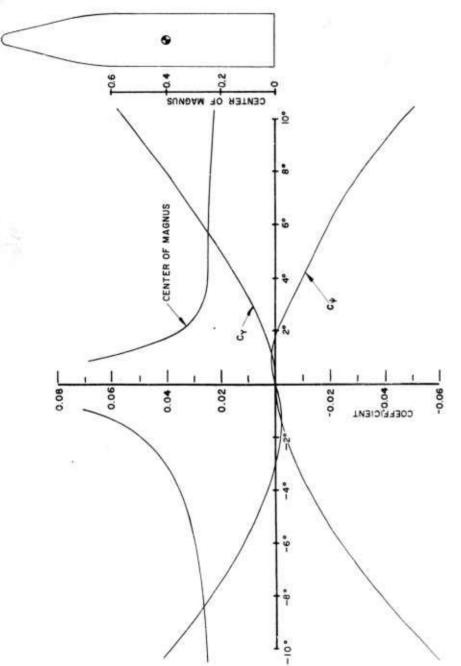


FIG. 44 C $_{\gamma}$, C $_{\psi}$, AND CENTER OF MAGNUS VS $_{a_1}$ FOR THE TYPICAL PROJECTILE NOSE (P=508 RPS)

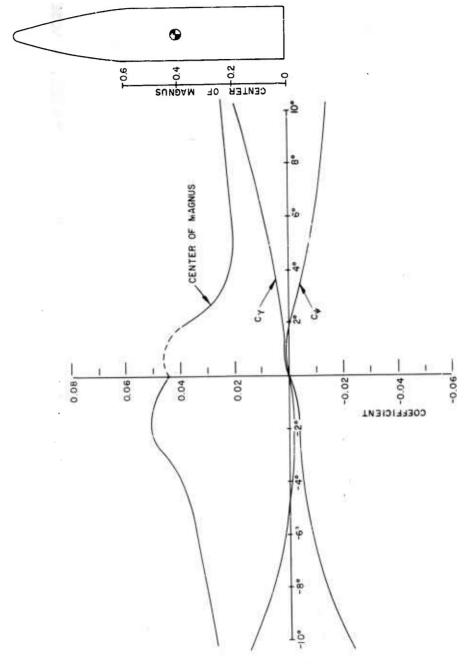


FIG. 45 C $_{\gamma},$ C $_{\psi},$ AND CENTER OF MAGNUS VS $_{\alpha\,|}$ FOR THE TYPICAL PROJECTILE NOSE (P=169 RPS)

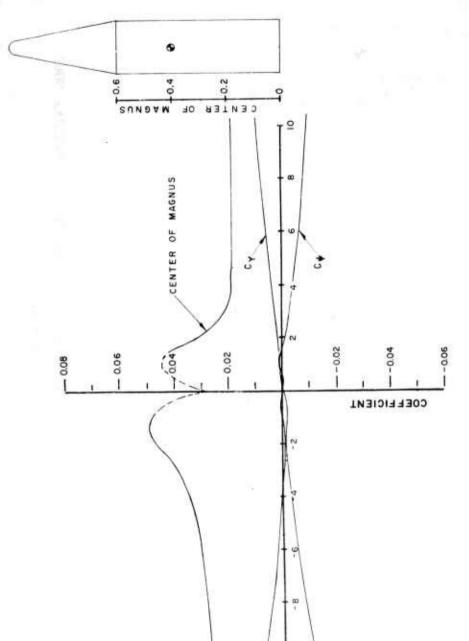
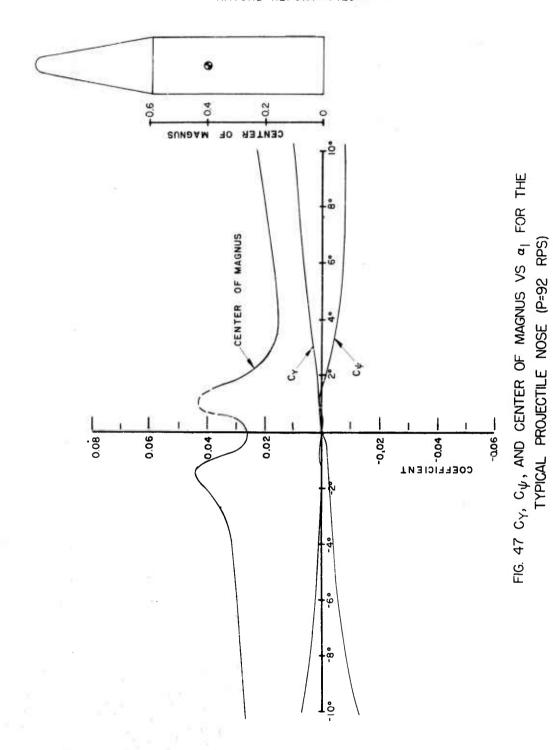



FIG. 46 Gy, C , and center of magnus vs α_1 for the typical projectile nose (P=86 RPS)

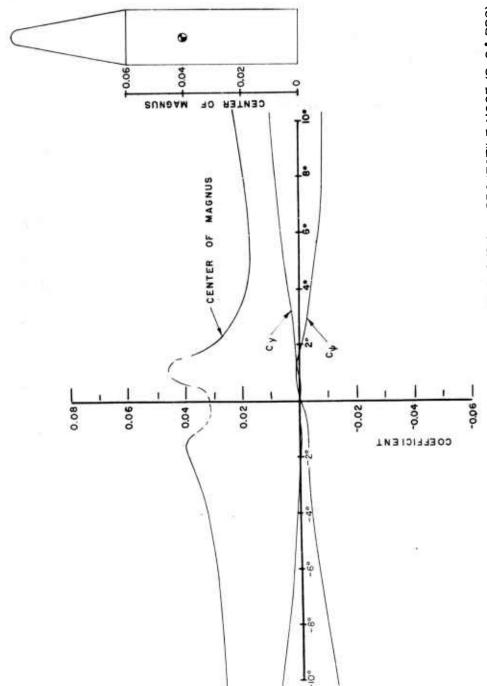


FIG. 48 C $_{\gamma}$, C $_{\psi}$, AND CENTER OF MAGNUS VS $_{\alpha_1}$ FOR THE TYPICAL PROJECTILE NOSE (P=94 RPS)

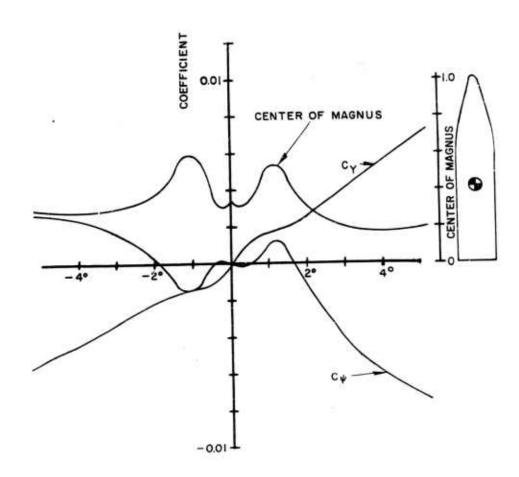


FIG.49 C_Y , C_{ψ} , AND CENTER OF MAGNUS VS α_1 FOR THE TYPICAL PROJECTILE NOSE (P=90 RPS)

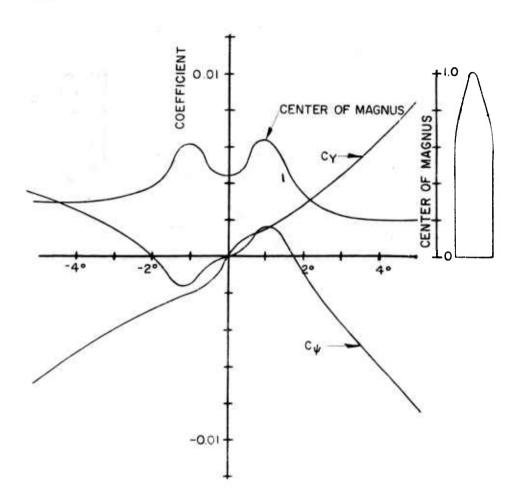


FIG. 50 Cy, C $_{\psi}$ AND CENTER OF MAGNUS VS α_1 FOR THE TYPICAL PROJECTILE P=122 RPS

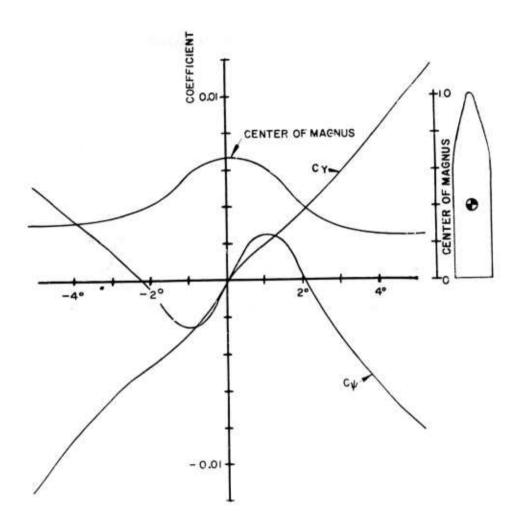


FIG. 51 C_Y , C_{Ψ} , AND CENTER OF MAGNUS VS α_1 FOR THE TYPICAL PROJECTILE NOSE (P = 211 RPS)

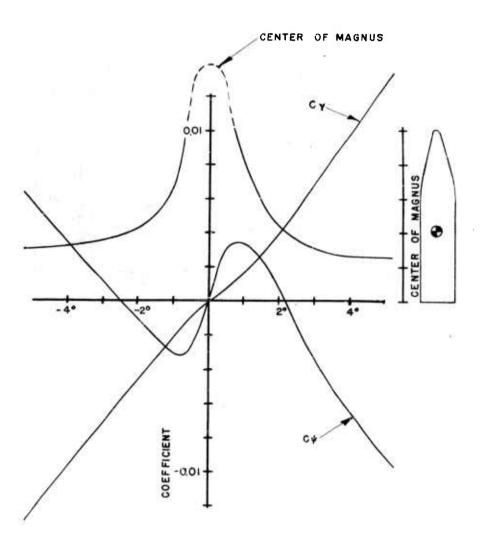


FIG. 52 Cy, C ψ , AND CENTER OF MAGNUS VS α_1 FOR THE TYPICAL PROJECTILE NOSE P=263, RPS

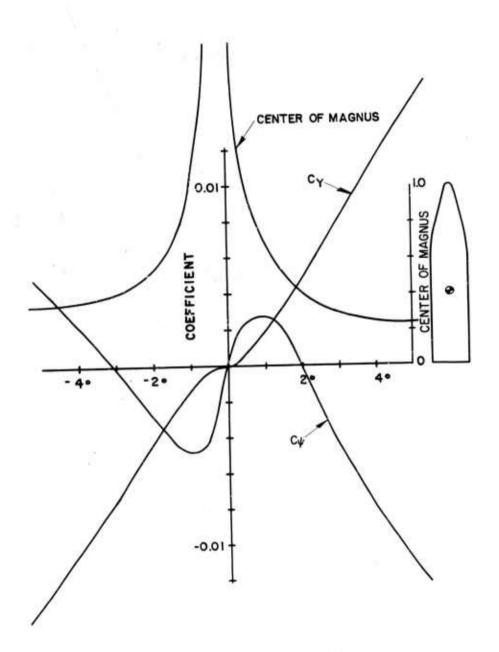


FIG. 53 Cy, Cy, AND CENTER OF MAGNUS VS α_1 FOR THE TYPICAL PROJECTILE NOSE (P=309 RPS)

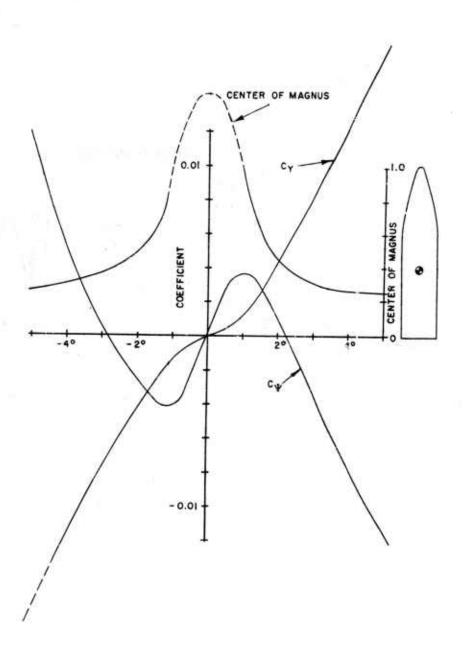


FIG. 54 C $_{Y}$, C $_{\psi}$ AND CENTER OF MAGNUS VS $_{\alpha_{1}}$ FOR THE TYPICAL PROJECTILE P=373RPS

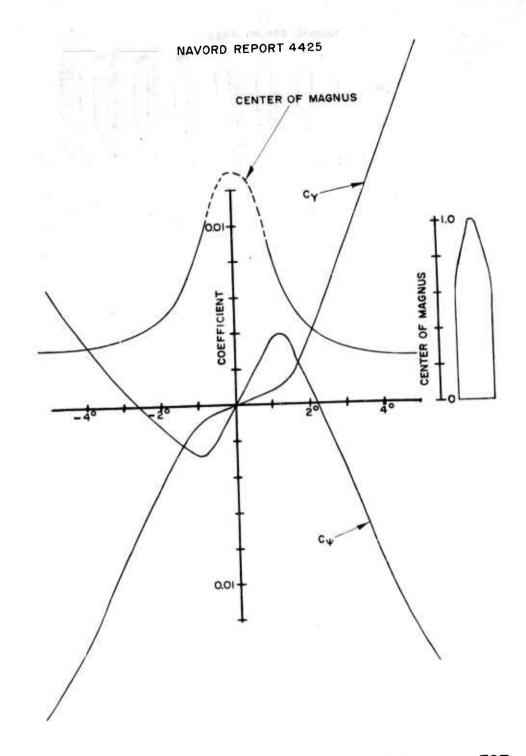


FIG. 55 CY, CV AND CENTER OF MAGNUS VS α_1 FOR THE TYPICAL PROJECTILE NOSE P=468 RPS

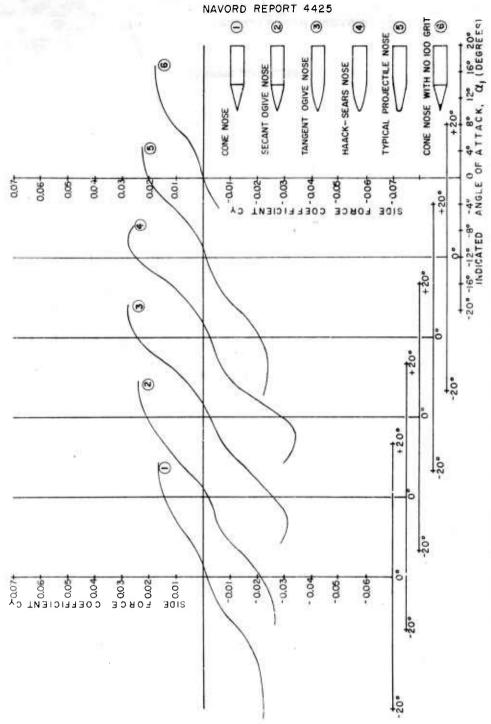
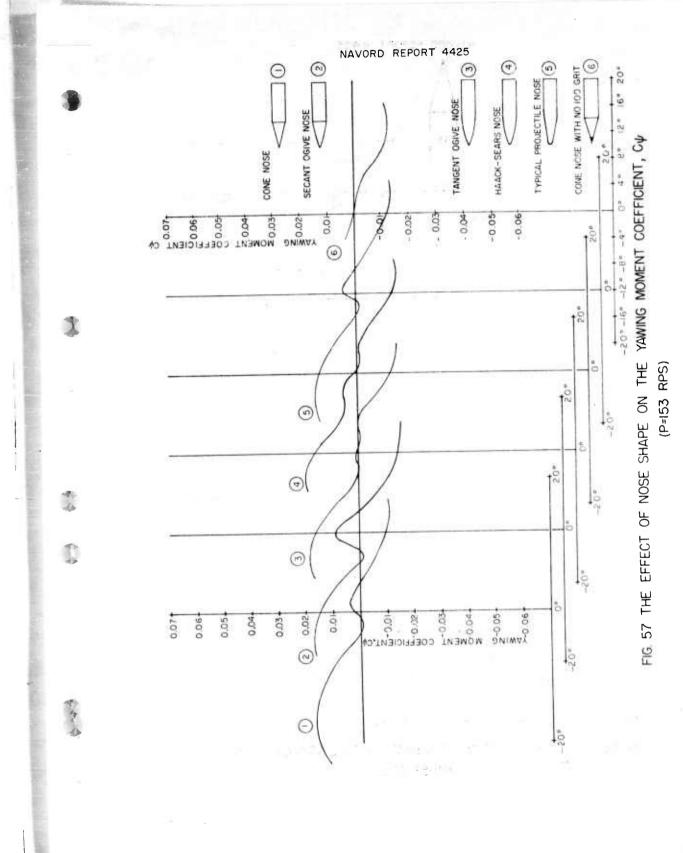
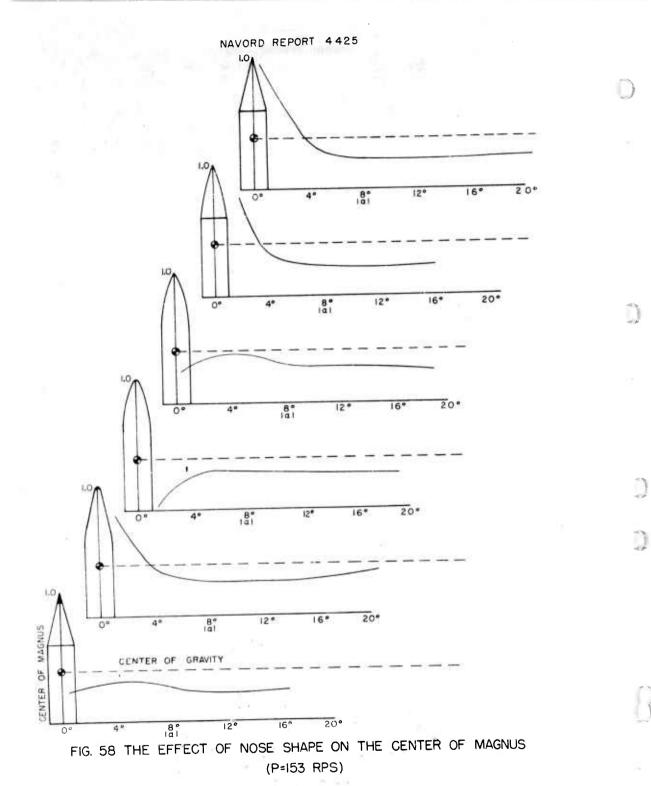




FIG. 56 TH: EFFECT OF NOSE SHAPE ON THE SIDE FORCE COEFFICIENT, C_{γ} (P=153 RPS)

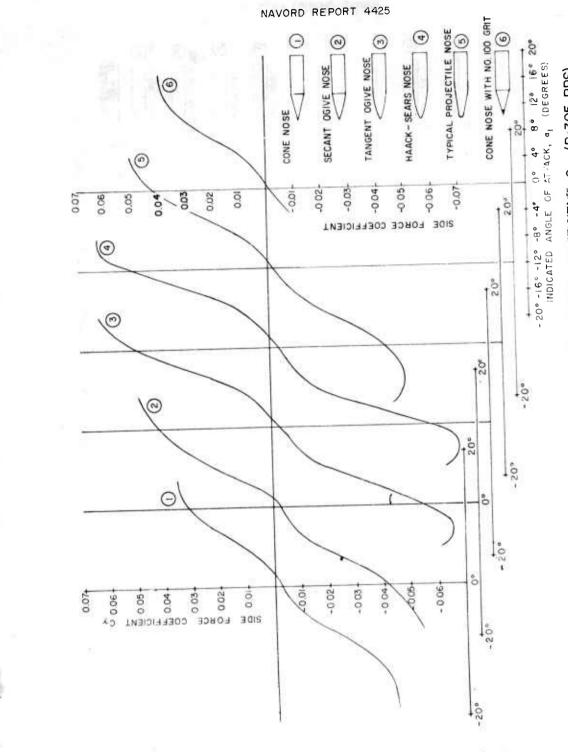


FIG. 59 THE EFFECT OF NOSE SHAPE ON THE SIDE FORCE COEFFICIENT, C_{γ} (P=305 RPS)

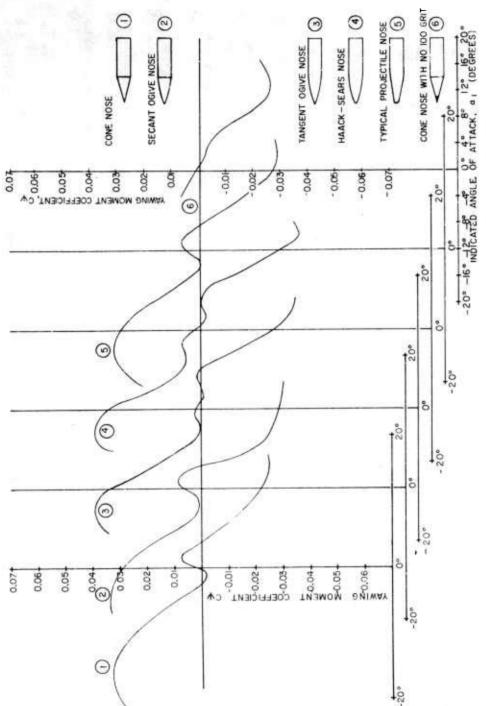


FIG. 60 THE EFFECT OF NOSE SHAPE ON THE YAWING MOMENT COEFFICIENT, C_{ψ} (P=305 RPS)

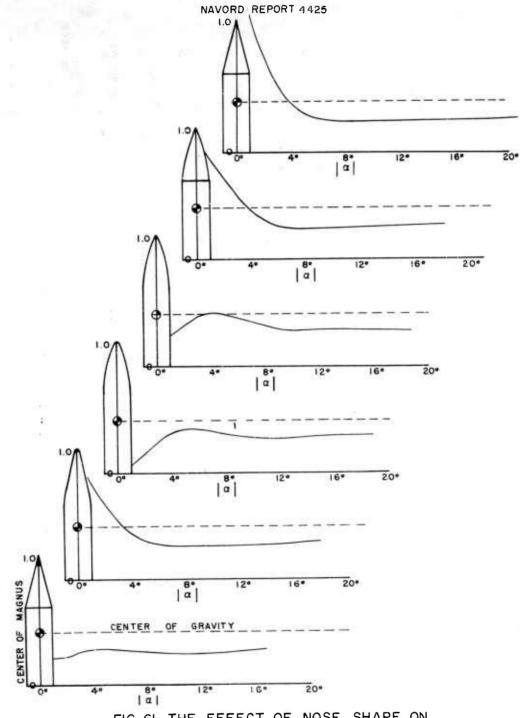
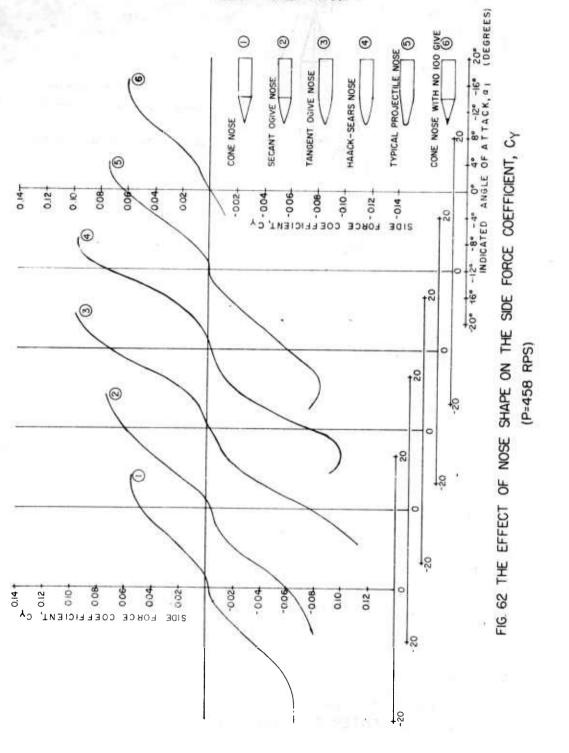
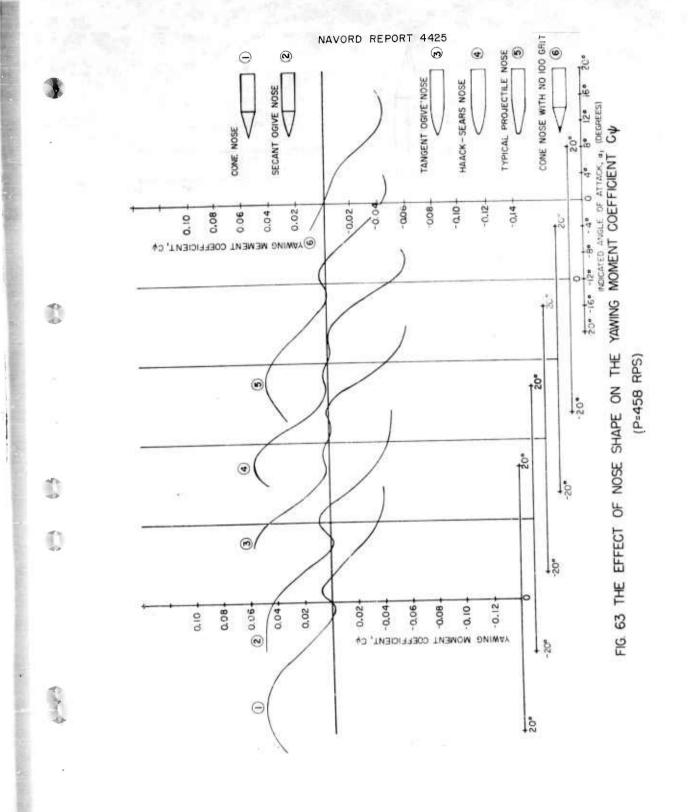




FIG. 61 THE EFFECT OF NOSE SHAPE ON THE CENTER OF MAGNUS (P=305 RPS)

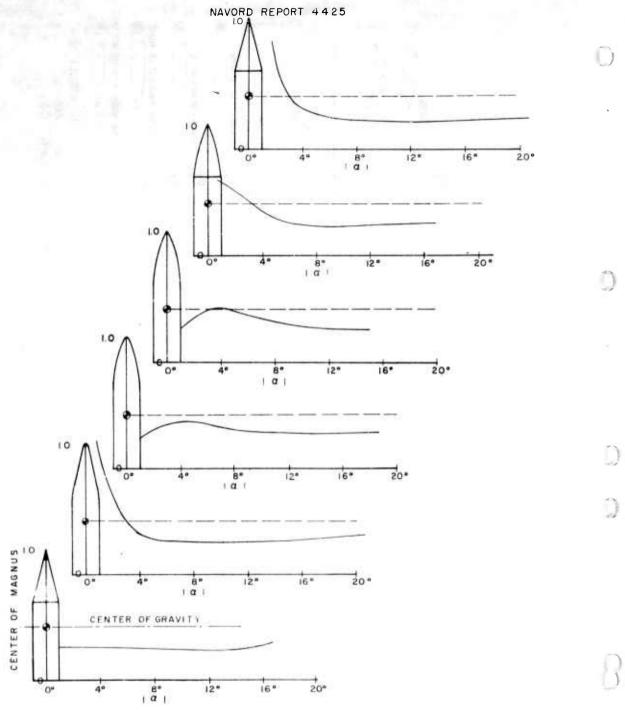


FIG.64 THE EFFECT OF NOSE SHAPE ON THE CENTER OF MAGNUS (P=458 RPS)

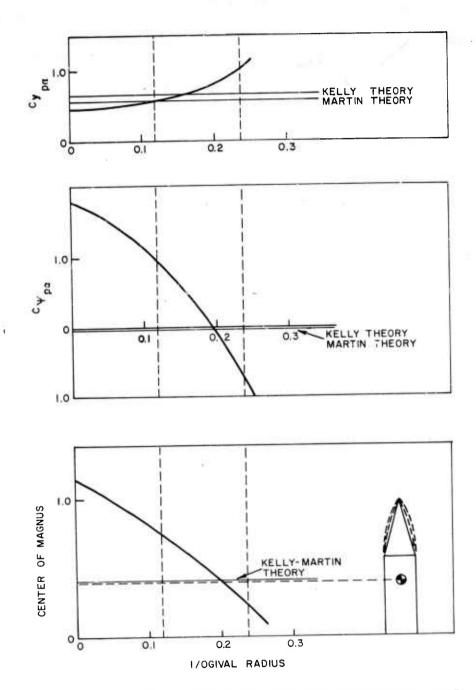
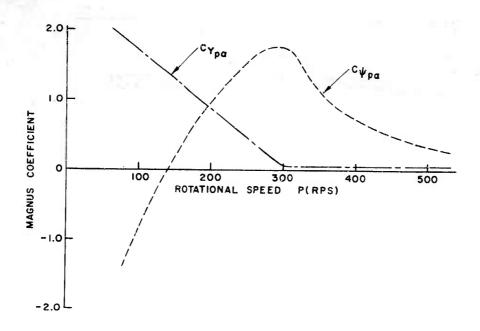



FIG. 65 THE EFFECT OF OGIVAL RADIUS ON THE INITIAL MAGNUS CHARACTERISTICS OF BODIES OF FINENESS RATIO 5 AT P=305 (RPS)

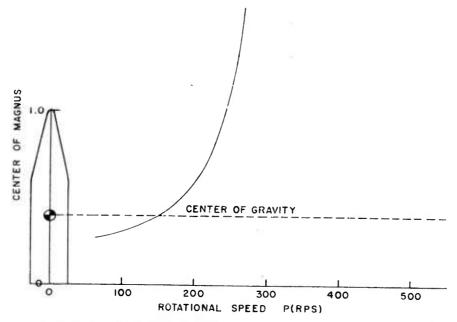


FIG. 66 THE EFFECT OF SPIN ON THE INITIAL MAGNUS CHARACTERISTICS OF THE TYPICAL PROJECTILE NOSE

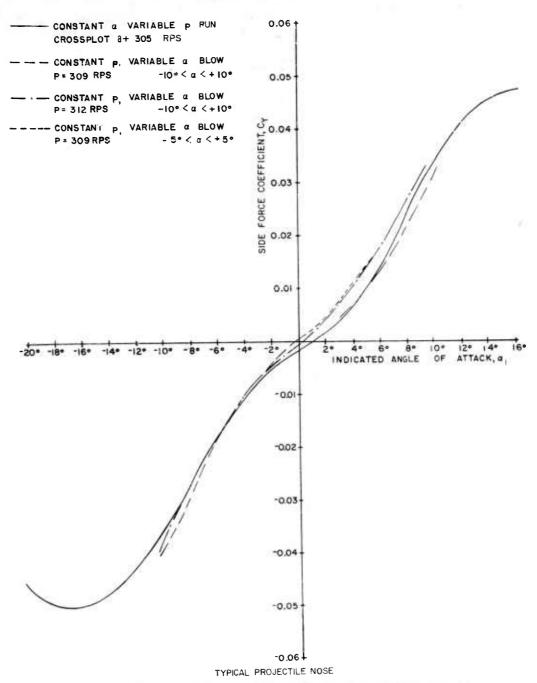


FIG. 67 COMPARISON OF THE SIDE FORCE COEFFICIENTS
OBTAINED BY TWO TEST TECHNIQUES

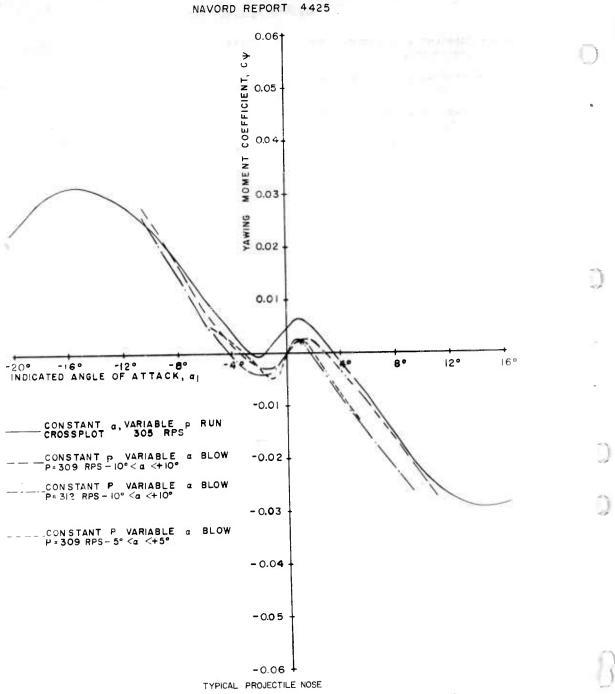


FIG. 68 COMPARISON OF THE YAWING MOMENT COEFFICIENTS
OBTAINED BY TWO TEST TECHIQUES

	0	46	8	699	196	868	.9720	981	951	968	781	68	20	27
	0	90	016	53	045	055	.0638	190	068	065	57	48	39	27
	60	16	20	21	021	2.1	.0220	022	24	26	29	33	36	04
1 01	•	3	0	36.	73.	10.	247.0	83.	20.	57.	94.	30.	67.	04.
01	•						2.00	•		•	•		•	•
241	0.0	9 0	40	0.5	90	0.7	08	60	01	1	12	13	4	15

241	01	1 02			
02	•	74.	49	38	.2718
03	•	47.	160	057	267
040		21.	118	079	200
0 0	4.00	394.9	.1344	-0956-	254
90	•	68.	4	30 (4 1
07		050	146	9	U U

	.2415	25	22	10	9	75	1	4	0	200	•	206	300		211	3	•	210	6		
	200	79	9670	100	0707	1013	000	1364	1651		1771	2775	100	077	1750		442	2517	2000	2	
	010	1	9 1	20	082	716	1	141	170	017	205	200	u	246	26.2	07	278	0	07670	20	
60 1		•	•	•	7		*	ç		-	74	•	j	17		4	-	1	458.1	46	
10																			00.9		
241		05	03	1	3	S	90) (0	80		60	10	1	11	12	4	13	14		2

	.2647	240	231	224	1 6	7	217	215	216	1 .	77	\overline{c}	326	1	'n	6	•	
	.0203-	9640	0798	1140	9	140	52	000	710	Ŏ	280	2948	000	7067	o		707	
	031	Š	000	7	1384	2	223	9		287	2	346		š	2	5	ŏ	
1 04	_		9	9	150.0	36	2		ž	97	33		Š	20	,	Ť	480.9	
05																	8.00	
.41	ć	70	03	40	50		9 9	6	08	0		2	11	2	71	13	1	

	.2477
	.2263-
	.3136
1 05	280.1
05	10.00
241	02

	.3665
1 06	268.3
05	12,00
241	02

	.58
	8808
1 07	0.009
05	14.00
241	02

.2590

241 02 1 08 02 15,80 600,0 ,9489 ,6323=

.2587

	0.55	17	0		31	31	32	27	2	8	7	25	2	-	0	3297
	0	002	002	3	007	600	.0107	010	000	002	007	0	9	7	211	.0255-
	010	017	25	032	038	045	.0531	058	200	070	73	73	36	17	80	81
1 09	•	3	20.	56.	93.	30.	267.4	04.	41.	77.	14.	51.	88.	25.	•	98
03	•	•	•	•	•	•	3.00	•	•	•	•	•		•		•
241	02	03	40	0.5	90	07	90	60	10	11	77	23	*	15	76	17

1557	.2457-	8080	020	.433	4092	5967	.281	309	336	604	604	0	281	-
N C	.0220	~	01	03	90	80	10	60	90	~	~	07	~	20
0088	-6900	000	000	003	910	.0251-	030	028	023	-0610.	018	018	022	024
57.9	' w		05.	17	78.	15.	52.	89.	26.	63.	9	36	73.	32.
1.00	00	•	•	•	1.00	1,00	1.00	1.00	1.00	1.00	•	•	1.00	
02	4	050	90	01	80	60	10	11	12	13	14	15	76	21

	.0663	.0721	0831	1000	7/01.	.1266	1558	2200	16.79	3694	459.7	-	.3821	2642	1000	1077.	1853	6 6 7 6	701.	1308	
	.0329	10603	7.0	0	382	381	690		200	803	72.00	3	00	000			190			140	5
	202	0377-		0000	0580	0612	521	4000	0401	0283	100	9770	•	AAAA	1	u	640	700	0595-	080	2
74 4		110						n	-		9 (n	~	3 6	-	м		v	519.1		••
70	100	3	1.8	1.00-	1.00-	8	3	1.00-	00	3	3	00	100	3	ွ	1.00-		1.00-	1.00		200
241	6	70	63	40		3 3	\$	07	a	0	00	C	1	77	12		1	14	4	7	16

241	02	1 12			
05	00.	ä	035	35	ச
60	2.00-	6	058	054	206
40	0	16.	673	063	219
0.5	.00	53.	0	054	249
90	2.00-	189.8	-0734-	.0367	2920
10	.00	26.	190	20	331
80	00.	63.	062	900	372
60	00.	00	0	000	389
10	00	37.	72	011	361
11	00.	73.	084	033	313
12	8	10.	160	057	275
13	0	47.	98	78	24
	00	84.	12	089	232
	0	20.	01	093	3

.1742	9	(84	84	ď	9	48	48	100	707	83	100	701	82	182	1	83	ξ	•
055	88		778	3	1746	200	2	225	5	0	797	276	000	מ	97	202	2	98	5	7
050	830		123	402	-6791		47	166	3365	9 (22.1	2647		0/7	84]	000	ò	856	700	ž
~	a		25	62.	1001		36.	73.	0		46.	23)	20.	57.		74.	30.		·
00		3	8	00	100		ွိ	00	3	•	00	2	>	80	0		ö	00		90
20	4 6	0	40	3	3	0	0	80		2	10	: :	77	12	7	7	4		1	4

	4047	.3686	.3520	.3428	.3316	.3240	.3170	,3115
	-40000	********	.0137	.0238	.0369	.0486	.0595	6190
	90	037	068	960	1222-	143	158	89
1 16	13.8	86.4	159-1	231.7	304.4	377-0	9.654	522.3
03	5.00-	00.4	- 00 · R	000	100	100	5.00-	
241	0	4 6	9 6	† u	0 0	9 6	- a	9 0

	4104	1011	• +266	.4929	5350		9700.	. 5951	. 6062	500	*ひんた。	.5958	5958	0 0 0 0	. 27.28	. 5955	5850	* 1 1
	5		2	017	5	020	47	Ď.	23	0419	011	-4240.	0	0424		-0412-	.0384-	
	-0217-	0286		-1550.	-0358-	0386-		-0288-	-9650	-0431-	170	107400	-0455-	-0416-		-0403-	-03680-	
1 15	58.1	4.46	٠ ح	0000	10/97	203.4	9	1000	•	N	-	١.	•	421.3	467	***	493.9	
69	3.00-	3.00-			3	3.00-			•	•	3.00-	0	•	3.00-	3.00	3	2.00-	
747	02	03	70	1	n	90	07		9 (00	10	-	4	77	*	1	\$	

	282	265	265	261	262	.2615	258	0 0 0
	111	090	100	141	174	. 2075	245	273
	331	960	158	217	269	-911E°	364	403
01	60	90	79.	52.	25.	398.1	71.	43.
60			•	•	•	8,00-		•
747	ć	7 6	2 6	יני ס כ	9 6	20	0 8	60

	C	28	28	.2784	27	~	•	•	
		0	.0721	$\overline{}$.1288	.1524	.1806	.2011	
	-9080	-8080	-1310-	-1775-	-2188-	.2583-	-2954-	.3198-	
1 17	40.7	113.5	186.2	258.9	331.6	404.4	477.1	549.8	
03				7.00-					
241	02	60	10	9	90	10	80	60	

1	267	263	191	4 0	2 2	270	254	253	2540	1
	.0468								2000	
	075	1 5	200	2	310	8			-6016	7
•							Ξ,	n	503.0	
0	,	:	ċ	0		•	5	ō	10.00-	c
241		02	03	40	1	2	90	07	08	0

241	03	~			•
02	0	9	102	990	261
0 3	d	56.	188	125	259
40	•	280	271	85	255
0	o	01.	351	243	53
90	0	74.	423	96	252
07	•	47.	489	340	52
8	10.00-	520.5	-5551-	.3930	•2504
60	ं	93.	809	433	49

241	03	2		9	446
02	~	•	252	7	1
03	~	5	101	747	25.4
40	~	18.	3116	417	250
0 2	~	91.	4097	687	450
90	12.00-	364.5	-2104	0000	2526
07	7	37	200	707	25.1
08	~	10	900	100	240
0	2	83.) (8)	22	-

	258	260	.2579	256	254	251	250	48
	045	111	.1832	251	321	395	459	526
	063	1695	-2732-	370	4672	5628	649	321
77 1	4	~	188.2	•	G	0	ø	3
60	00	2.00	12.00-	2,00	2.00	2.00	2.00	2.00
1+7	02	03	40	05	90	07	80	60

	.2503
	.6343
	.5336-
1 23	352.1
60	14.00-
241	02

	.2608
	.6373
	-9715-
17 1	0.009
0	16.00-
747	02

2 18.00 600.0 1.0489- .6521

	316	323	323	323	318	.3163	313	310
	8	01	02	02	60	.0384-	40	40
	.0206	.0392	.0588	•0769	.0917	.1014	.1090	.1110
2 01	19.8	04	4	0	N	145.6	20	In
40	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
241	02	03	90	90	90	07	80	00

	70	246	242	0	.2401	240	39	33	
	.0170-	0	60	ന	16	0	ന	•	
	027	74	125	176	• 2222	3	20	49	
70 7	Ð	L.	0	ဆ	355.0	~	0	-	
5	8.00	•	•	•	8.00	•			
147	02	03	40	90	90	0.7	80	60	

241	•	2 04			
00	S	0	.0710	LO.	.2464
03	15.80	43.	.1541	-1118-	.2469
40	10	16.	2	~	.2485
0.5	14	89.	3	23	N
90	5	62.	4	30	.249]
0.7	S	35.	5	36	2
80	5	8	.6163	•	.2482
60	5	90	~	3	\sim

02	14.00	æ	0.63	000	;
,			5	S	707
03	14.00	_	137	100	0
70	14.00	΄,	1		とりぬ
*	200	;	228	164	746
0.5	14.00	287.6	2197	2227	
		. ,	1	200	743
9	74.00	•	014	304	242
70	14.00	~	2		
- 6		•	200	20	241
œ	74.00		598	457	176
60	14.00	3	720	1 1	1
		•	2	200	?

40

	44	.3023	272	259	48	245	42	47	45	
	0058	-0239-	0688	1187	1800	322	806	325	82	
	02	.0533	11	7	25	-	37	3	9	
90 7	36.5	73.1	46	19.	92.	65.	38.	511.6	00	
†	•	10.00	•		•	•		•	•	
147	05	03	70	05	90	07	90	60	20	

	.4052	3500		0776.	3000	2025	1070	.2776	7737		.2714	2700	00170
	7000	0037		-01110.	.0384	0000	10000	. 0823-	1000	0001	-1151-	0700	-0071
	5	• (*770*	S	0835		7	7	1071	1601.	1908		5002
70 7		•	•	57	3000	?	9	76		ຊ	23	1	8
40	,	200	00.9	6.00		000	00.9			00.9		•	00.9
241	4	02	03	2	t :	S	90	100	5	œ	0	2	10

	.6941			4	3077	3000	2822	3777	3755
	• 00 71	.0152	0150	.0077	.0018	-4000	0039	-9200	00 10
	8	_	9	04	90	~	~	. ~~	.0849
2 08	39.	12.	86.	259.3	32	5	13	52	2
40	00.4	•		•	•	•	•	-	-
241	05	03	40	0.5	90	0	80	60	30

	58 1.2	8. 62	9. 18	22 .5583	33 .5	68 .5	649	4.5
	0	-	10	02	02	02	N	5
	.0014	•0061	.0154	.0267	.0336	0	0	C
80 7	45.8	6	2.	Š	8	2	Š	2
\$	•	•		3.00	•		•	
241	02	03	40	050	90	07	80	0

	.500	925	461	577	.943	1.4580-	925	285	973
	.0133	03	9	.0590	90	.0711	90	90	.0553
	.0024	.0042	•0046	•0054	.0037	-0015-	-0041-	-0072-	-0081-
7 70	49.2	122.6	186.1	269.5	343.0	416.4	489.8	563.3	0.009
†	•	•			•	2.00			•
147	05	03	40	05	90	07	90	60	10

	-5080-	-6644.	3938	-3386-	2172	·0883-	.0103-	.0517	•0643
	.0207	0	6090	0	.0731	•0754	•010	.0570	.0526
	940	0105	-0155-	0193	240	0314	351	335	321
77 7	65.9	S CO	212.5	00	S.	S.	0	~	0.009
0	•	00	•	•	1.00	•	1.00	•	1.00
167	00	0 0	40	0.5	90	07	80	60	10

	.2027	N	N	N	_	.1738	.1636	1547	.1520.
.0081	.0124	.0153	.0173	.0213	.0251	.0288	.0330	.0363	.0378
-0083-	•0131-	•	J	\circ	0	-0264-	.0289-	-9080	.0315-
44.1	80.8	117.5	90.	64.	37.	411.3	84.	558.1	00
•	•		•	•		00.0	•		00.0
02	03	04	05	90	07	80	60	10	11

241

	05450	4694	.4857	.5201	.5570	• 6249	.6258	.5522	.4109	
	-0033-	-27000	-0110-	.0203-	-0520°	-0326-	-0304-	-0201-	.0023-	
	-0127-	-0100-	-0254-	-0317-	-0314-	-0280-	-0260-	-0251-	-0244-	
e1 7	46.8	83.4	120.0	193.2	266.3	339.5	412.47	485.9	559.0	
٥٥	-00-1	1.00-	1.00-	-00-1	-00-1	100		00	100) •
241	60	4 6	9 6	+ u	3 6	9 6	5 6	0 0	N C	2

	4554	447	4305	44.	450	4320	.3981	3583	.3231	
		0086	19	0152	0190	.0133-	0050	011	.0224	
	.0101-	•	-0501-	•	0	-0690-	0	•0653-	O	
2 14	34.4	107.6	180.7	253.9	327.1	400.2	413.4	546.6	0.009	
9	•		•	•	•	2 • 00-	•	•	•	
241	05	03	*0	02	90	20	89	60	10	

	.2856	.2946	.3008	.3101	.3163	.3170	.3040	•2796	.2626	
	.0116	.0261	.0351	.0377	.0385	.0400	.0486	• 0645	.0757	
	.0218-	-0536-	-0770-	.0921-	-1017-	-1067-	-1105-	-1148-	-1170-	
	45.4	118.5	191.7	264.9	338.1	411.2	484.4	557.6	0.009	
)	3.00-	•	•	•	•	•	•	•	3.00-	
***	02	03	40	0.5	90	07	80	60	10	

167	5	91 7			
02	-00-4	26.0	-0209-	.0032	1461
03	-00°+		-0440-	1900	3456
40	+ 00- +	O	-0703-	0142	25.5
05	4.00-	_	091	0197	3487
90	** 00-	•	110	.0332	3317
07	4.00-	421.8	-1258-	.0442	3217
90	4.00-	α	133	0511	3153
60	4.00-	~	-1361-	0566	9000

E.	347 .2944	•2	•2	.2	•2	•2	``
•	•	•	•	•	•	•	
•		•	•	•	•	•	
	154.2						
ď	יעי	'n	Ŋ	2	S	Š	u
00	0 0	04	0.5	90	07	80	0

241	90	2 18			
02	-00.9	33.0	-0203-	.0117	.2800
03	-00-9	106.4	630	.0363	.2778
40	-00-9	179.7	.1023-	.0582	.2788
0.5	• 00 • 9	253.1	-1407-	.0836	.2732
90	-00-9	326.4	-1774-	.1103	.2676
0.7	-00-9	399.8	-2072-	.1317	
90	-00-9	473.1	.2348-	.1532	.2615
60	-00-9	546.5	.2591-	.1761	.2561
10	-00-9	•	-2672-	.1824	.2555

241	90	2 19			
S	1	57.6	-0526-	.0353	.2578
9 6		3	-1161-	08	.2540
9 6	•	40	-1765-	12	251
2 0		1	_2312-	.1677	.2469
3 6		5	-2821-	20	246
0 0		24	.3273-	23	245
5 6	00.8	498	-3686-	.2698	245
9 0	•	7	-4073-	30	.2412
) r	•	9	-4217-	.3215	239

241	90	2 20			
02	0	9	63	048	239
03	•	29.	143	08	240
04	o	03.	22	170	238
0.5	ં	76.	296	232	35
90	10.00-	349.9	-3647-	.2888	.2336
07	ં	23.	28	343	31
80	ं	96	88	396	29
60	ं	33.	~	25	227

	.2471	25	4	4	\$ (2	23	.2342	2	נ	?
	.0507			-	\sim	m	(4)	4644	u		.5685
	070	163	1 0	727	336	423	505	5886-		00	12
77 7	51.5	124 6	00477	197.7	270.8	343.8	416.9	0004	0000	563.1	0.009
0	0	2	2	00	00	00	100	•	٠	•	12.00-
747	ć	70	2	40	60	1 4	9 6	- (20 O	60	10

	35 .2414 35 .2389 36 .2344
	.2646 .3835 .6436
	.3515- .5010- .8169-
77 7	252.4 362.2 600.0
90	14.00-
241	003

02 16.00- 600.0 .8649- .6433

	.2488 .2505 .2532
	.3627 .4744 .6282
	.5065-
2 24	345.4 455.1 600.0
90	18.00-
241	000

	.2511 .2511 .2507 .2516 .2530	
	.3202 .4758 .3988 .5574	
	. 4507- . 6753- . 5643- . 7940-	
2 25	911.3 459.7 386.6 532.7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
90	18.00- 18.00- 18.00-	2
241	00000	2

	2	,2584	S	5	S
	.3369	•4139	• 4842	.5725	.6057
	-5087-	-6197-	-1291-	-8658.	-0016
2 27	352.0	425.1	497.6	570.7	0.009
90	18.00-	18.00	18.00-	18.00-	18.00-
241	0.2	03	40	05	90

241	90	2 28	r c	6	6
٠.	18·00-	70/67	- 4 30 /-	. 5033	7767.
~	18.00-	370.5	-5415-	.3809	.2512
04	18.00-	442.9	-0259.	.4571	.2529
	18.00-	516.0	-4877.	.5374	.2540
.,	18.00	6.00	-9232-	65 69	2555

	24	4	25	52	25	25	9	.2616	56
	S	13	20	27	4	42	50	.5916	63
	072	182	291	402	517	641	169	. 9072-	974
2 29	3	28	0	73	46	19	92	565.0	00
90								20.00-	
241	02	03	04	0.5	90	0.7	90	60	0

		• 2	•	93 ,2712	• 2
	, 59	.35	.86	.50	.57
	-5671-	-6004-	-8264-	.8429-	-9307-
7	335.1	408.3	480.7	553.4	0.009
0	22.00-	22.00	22.00	22.00-	22.00-
7 4 7	0	, «) C	9 6	20.0	90

	.3815	7005.	4174	4401	4741	4870	4952	•
	-5000	0031	. 0055 (200	0000	0220	0.45.8 8.7.8.0	0000	
	\$600	.0231	.0311	\circ	6100	, 、	, ,	0.00
3 01		132.8		œ.	•	• •		*
10	00.4	00	4.00	•	•	•	4.00	4 • 00
241	Ċ	7 6	0 0	0	90	07	08	60

	35	.3357	32	-	32	_	32	32	
	800	.0325-	062	093	9	124	3	12	
	046	,1155	187	251	588	341	370	410	
3 02	•	135.8	0	ω,	J.	N	0	\circ	
0 2	8.00	8.00	•				•		
24.1	02	03	04	05	90	07	08	60	

	.2816	277	78	0 10	0 1 7	2 (2	274	271	270	2	9	
	03	990	13610	1 6	2	26.5	58	424	107	9	50	
	.0594	116	0	200	263	490	909	706	0 0	ر ح	S	
	41.6	78.1	- 14	n	N	O	~			~	552.6	
•		•	•	•			, (•	•		12.00	•
747	ć	7 0	5	40	0.5	9	0 0	5 6	α C	60	0	•

	38	286	282	282	77	274	272	.2707
	800	120	211	95	404	506	605	.6593-
	038	227	*	541	709		.013	1,0872
40	4	27.	00	273.7	46.	19.	92.	•
5	Z,	ŝ	ŝ	15.80	5	S	ŝ	ŝ
147	02	03	04	90	90	07	80	60

	.2907	287	283	279	1	7	27	269	26	1
	-6630-	136	221	4 4	2 10	410	508	506	747	İ
	.1262	•		1404°	Š	2	84	6		Š
0	82.0	1 44 1	10001	228.3	301.5	374.6	447.8		221.0	557.6
5										14.00
24.	ć	70	03	04	20	3	0 1	0	08	60

241	0 /	3 06			
02	10.00	31.5	8	102	.3204
03	0	2	690	024	322
40	0	4	112	419	,3177
05	0	36	159	9490	311
90	0	9	3	1140	302
0	10,00	282.4	.3460	.1646-	.2969
08	0	13	390	1897	294
60	\circ	92	9	2161	298
10	0	99	*	754	.2839

	.3851	.3841	.3918	,3928	.3962
	.0010-	-0056-	.0001-	• 0005	• 0030
	.0291	.0655	6960	.1224	.1427
5	52.9	126.3	199.8	273.2	346.6
	00.9	00.9	00.9	00.9	00.9
7+7	02	03	04	0.5	90

4327 4287 3974 4135 4212 4242
.0025 .0062 .0016 .0086 .0182
.0123 .0338 .0594 .0800 .0955 .1129
49.1 195.8 195.8 269.2 342.5 415.9
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.3512 .4103 .4944

00055-0038

.0319 .0416 .0613

.3 09 260.6 365.0

0000

8	.4973	36	8	29	1	61	.1423	95	.2744	.3791	• 6057
0	-0000-	4	33	-	47	-1510.	0	.0215-	.0144-		.0219
4000	-86009	-1900	v	60	02	.0059	15	.0219	.0245	26	•0209
	67.2	•		176.6		•	322.6			541.6	0.009
•	2.00			•	•		•	•		•	•
02	03	40	0.5	90	07	80	60	10	11	12	13

		•	2	49	7	2	329	.7837	08
	.0017	.0010	-1500.	-0039-	.0053-	-00500	-5000	1400.	.0216
	ത	011	800	~	003	000	~~	002	-0018-
77 6	•	•	53	26.	0,0	73.	46	19	0.009
0	1.00	• •	•	•	•		•	•	8
241	0.0	9 0	2 0	# u	0 0	9 6	5 6	0 0	0

	*	276	82	291	•2699	20	4	35
	0	8	9	-	0	~	\sim	N
	088	169	225	272	-0280-	289	293	277
3 12	69	90	43.	16.	289.7	63.	36.	.60
<u>,</u>	•	•	•	•	00.0	•	•	•
147	02	03	40	05	90	07	80	60

	6	1 6	1 10		, ,	7 6	9 6		3	9	6	.3296
	.0003	000	00	012		0760	200	7 6 6	7470.	.0201	.0204	.0232
		.0217-	033	045	052	061	5	740		20.0	2	.0743-
3 13	46.8	•					336.6			_	250.4	0.009
07	1.00-	8	1.00-	1.00-	00	0	Ò	_	00	3	0	1.00-
241	0.5	03	40	0.5	90	07	08	60	10	-	7 1	77

	.1833	4	211	216	233	59	86
	.0264	2 0	, ~	08	~	90	
	0253	2 5	0846	0933	9880	916	1317
3 14	193	9	80	53.	26.	6	9
20	2.00-	80	00.	80	300	9 6	3
241	02	90	05	90	> 6	0 0	5

	_	19	2	22	24	.2766	2	4
	0	055	190	078	073	10900	054	028
	26	056	470	092	560	10	111	a
	54.3	127.6	201.0	274.3	347.7	421.0	40464	0.009
0	0					• 9		3.00-
747	c	4 6	2 6) C	3 6) C	- a	0

	-0027-	.0007	.0086	.0072	.0011-	0131-	-0143-
	24	051	075	.0912-	105	114	123
3 16	6	52.	26.	299.3	72.	45	18.
0.7	•	•	•	4.00			
241	02	03	04	90	90	20	80

	.3349	3	.3317	G	3	E	3	3
	0	2	-9680.	02	2	02	\sim	02
	40	08	.1310	14	S	17	Ø.	20
1	71.2					•		
5	•	•	5.00-	•	•	•	•	•
747	02	03	40	05	90	07	80	60

	322	322	327	332	.3358	337	339
	017	037	050	950	.0618	190	070
	-	2	5	19	.2201-	24	26
3 18	•	33.	90	80.	353.5	24.	03.
0.7	9	-00-9	-00-9	-00-9	-00-9	-00-9	-00-9
241	02	03	0 4	0.5	90	07	08

	.2989	\sim	a	*3044	m	a	3	a
	40	9	20	.1330	15	17	18	18
	08	17	24	.3035-	35	39	3	47
3 19	ô	8	7	290.5	6	7	0	d
0	00:	00	00	8.00	00	00	00	00
241	02	03	40	0.5	90	07	08	60

	292	292	287	289	289	292	.2933	293
	.0577	.1088	.1684	.2152	.2558	.2825	.3079	.3340
	76	218	22	420	500	65	-6239-	619
3 70	7	52	26	99	73	46	520.0	00
20	0	•	•	o	•	•	10.00-	•
241	02	60	40	05	90	07	80	60

	266	9	272	.2791	272	7	274	9
	043	27	200	.2637	55	423	470	38
	693	2027	362	.4673-	933	1097	8015	302
3 21	64	22.	95.	269.2	45.	15.	84.	8
01	2.00	8	2.00	N	2,00	2.00	000	2.00
241	0.5	0	40	0.5	90	07	80	60

	272	.2775	277	275	275	272	273	281
	650	.1521	245	344	432	530	9009	630
	153	-2657-	4303	5935	7452	8915	.0178	404
3 22	8	131.3	40	78	51	24	98	0
0.7	0.4	14.00-	4.0	0.4	4.0	4.0	4.0	4.0
14	02	03	40	0.50	90	0.7	80	60

	7	-	27	27	0	28	27	~	27	
	03	*690°	7	.1634	3	.3290	3	. 5367	.6194	
	0		_	\sim	S.	-5985-	~	Q,	0	
	30.7	67.3	102.9	140.5	213.7	286 ₆ 8	360.0	433.2	508.5	
-	16.00-	16.00-	16.00-	16.00-	16.00-	16.00-	16.00-	16.00-	16.00-	
147	02	03	40	0.5	90	10	80	60	10	

	.2724	7	273	277	278	278	78	
	.0299	.1172	23	29	38	.4636	20	
	50	.1943-	357	515	7.1	816	83	
47 6	32.2	105.4	178.5	251.0	324.1	397.3	433.9	
01	a	0 0	•	0 0	o a	9 a	18.00	
241	ć	7 0	200	9 0	0 0	9 6	800	,

		28	0	28	.2831	28	28	28	28
	033	80	124	170	.2121	244	268	85	40
	55	1469	231	3143	-3886-	4495	4972	5353	5632
3 25	•	9	7.	•	333.7	7.	•	-	•
0.7	0	•	0	0	-00-6	0	0	0	0
241	02	03	04	90	90	07	80	60	10

41	0.7	7			
	00	45.	415	013	32
	00•	18.	1052	037	321
	00.	92.	1681	49	315
	00•	65.	232	088	12
	000	38.	647	01	315
	00•	12.	3000	1113	316
	7.00-	485.6	-3300-	.1239	316
	00	58	558	4	16
	00.	8	584	27	320

	4.9920	.2944	.3245	.3629	.3723	.3728	.3924	.3888	.3840	.3860	
	.0023	-0400	-0077-	-1500	.0045-	-1500.	.0001	-60000	.0024-	.0018-	
	.0001	.0082	.0228	.0351	.0458	.0531	.0540	.0571	.0597	•0602	
10	23.4	59.9	132.9	.50	78.	51.	424.8	97.	68.	00	
9	00 • 7	4.00	00	4.00	4.00	4.00	4.00	00.4	4.00	4.00	
142	0.0	0 3	40	0.5	90	07	90	60	10	1	

147	20	4 02			
02	•	75.3	056	0312	28
03			120	9290	27
40	•		178	936	40
05			225	1071	29
90	•		268	1255	29
07	8.00		.3055	-1391-	.3005
80			339	1546	30
60			369	715	29

	.2902	.2907	.2871	.2823	2797	2735	000	90179	. 7588	.2664	.2640
	0248	4	80	91	2	2	76	3	- 4607-	22	.5672-
	0	1031	_	2971		0000	.,	w	.7481	.8320	.8864
4 03	38.0		c	2 6			30	02.	75.	48.	0.009
8 0											12.00
241	ć	7 0	6 6	9 6	0	90	0	80		9 -	=

	.2902	90	90	288	283	283	279	274		270
	17	44	078	16	213	303	409	522	-6344-	4
	033	088	54	226	395	559	26	893	0	18
t b	3	6	.9	32.	05.	78.	51.	24.	497.1	.00
0	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	15.80	5.8
147	02	60	40	0.5	0.6	07	80	60	10	11

-	.284Z	.2900	2842	.2795	.2775	•	.2656	.2639	.2615
	-8040	-1014-	-1969-	-2998-	-1266	.5225-	-6127-	-8069.	.7554-
	1210.	.1989	36	53	.6858	.8442	1696	~	1,1580
4 05		16.	89.	62.	35	410.2	83.	556.2	00
0.8	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00
241	00	ie	40	8	3 6	200	0	0	07

	6460	03392	4. 5900	1312	6772	942	6902	0782	.3433272	8072
	023	68	660	H	40	388	19	23	.5762	23
90 +	•	7.	4	67.	40.	13.	86.	.09	532.8	00
80	•					•		•	10.00	•
241	07	03	40	60	90	07	80	60	01.	11

	.3450	(41	.3340	3466	লে	3442	.3418	a	(1)
	002	011	019	.0213-	026	\sim	038	053	-
	0	3	90	.0939	$\overline{}$	13	S	7	00
4	38	20	83	256.9	29	02	16	50	00
9	00.9	•	•	00.9	•	•		•	
147	02	03	40	0 5	90	07	80	60	10

	.5102	38	28	~	30	33	8	S	5
	0026	001	0107	.0200-	0199	130	023	011	22
	0	0	02	3	4	04	4	3	•0369
4 08	48.9	S	58	23164	40	17	50	24	0
80	•	•	•			•	•		3.00
141	02	03	40	0.5	90	07	0.8	60	10

1	.4.768	.5363	.6817	•	-1610.	.1233	.1836	.2226	.2514	2001	1047
	-0014-	-4400°	-4800	.0182- 3	0250	0262	.0274-	0255	.0246-	22.0	-0110
•	3	5	-8500	60	0	0	02	0	0350		•0312
h t	6	6	4.96	69	42.	15.	00	19	170	+	•
9		•	2.00	•	•	• •	•	•	•	•	•
241	6	9 6	3 6	ל ע ס כ	3 6	9 6	5 6	9 6	N (2	11

	.4210	.4131	.4113	COD.		.6470	.5047	S	.5539	00	3
	-00100-	-0014-	-0017-	-9800.	-0112-	0	-0071-	5	8	8	- 5400
	•	013	~	018	4	0	-0126-	Ø	8	3	ø
	23.4	58.9	4º.76	169.3	242.3	315.2	388.3	461.3	534,3	607.3	666.4
1	•		1.00	1.00	•	1.00	1.00	1.00	1.00	1.00	1.00
! !	02	03	04	9	90	20	80	60	10	11	12

02 0.00 36.5 .0133- 03 0.00 73.0 .0211- 04 0.00 109.5 .0272- 05 0.00 182.5 .0338- 06 0.00 255.5 .0340- 07 0.00 255.5 .0331- 08 0.00 473.0 .0319- 11 0.00 546.0 .0310-
0.00 473
02 03 05 06 07 09 10

	0	07	60	12	15	20	.2607	35	
	010	35	052	059	150	045	.0317	90	
	-00062-	Q	.0353-	0	0	-9640.	-0483-	-0398-	
4 12	18.2	1.	64.	37.	10.	83.	456.2	29.	
8	1.00-	1.00-					1.00-	•	
241	02	03	40	0.5	90	07	80	60	

	.1699	- N	α	.3528
4 6	6890	200	0.54	12
.0212-	.0588-	, 0	\circ	-6590
57.1	\sim	9 6	700	0
2.00-		•		
02	400	90	- «	60

4	9	•			
02	3.00-	0	02	00	•1720
03	90	65.	012	7	.1546
40	00.	02.	0259	025	192
05	00.	75.	505	940	207
90	3.00-	•	90	052	.2364
07	• 00	22.	0739	044	270
90	00.	95.	0752	032	304
60	00.	58.	721	7	351
10	00	41.	6590	900	.4051
11	00	9	-0582-	-0238-	.4738

	.2268	.2375	.2575	.2752	.3122	.3459	.3734	3996
		J	0	.0581	0	0	.0101	O
	.0282-	580	822	9660	1048	1085	-1084-	1077
4 T2	61.5	34.	07.	81.	54.	27.	-	00
8	4.00-	9	9	0	0	0	9	੍ਹ
741	05.	60	4	0.5	90	20	တ	60

	26	26	28	30	32	34	37	.3698	35
	02	9	05	90	40	3	10	10	.0266
	036	82	105	126	39	147	52	.1593-	3
4 16	58	32	05	78	52	25	98	572.1	8
80		•	•	•	•	•	•	-00-9	5.00-
241	02	03	*	9	90	07	80	60	01

	-4580-	.1513	.2026	•2346	.2546	.2983	.3159	.3260	.3325	.3394	.3384	
	.0017	.0136	.0321	***0.	•0654	.0592	•0566	•0559	.0558	.0527	.0561	
	-4000	0	-0339-	0		.1264-	.1488-	-1695-	-1875-	-2004-	-2602-	
4 17	15.4	52.8	89.4	126.0	199.3	272.5	345.8	419.0	492.3	565.6	0.009	
08	-00-9	-00-9	-00-9	- 00-9	-00.9	-00-9	-00-9	-00-9	-00-9	-00-9	*00 * 9	
241	02	03	0	02	90	07	80	60	10	11	12	

	.4174	4	.3912	(T)	.3861	æ	.3835	.3846	.3849	
	-0053-	8	*000	8	8	• 00 55	8	8	.0091	
	0181	581	-9660.	1359	691	3	22	4	5	
\$T +		40	177.5	50	24.	97.	70.	44	00	
8 0	-	•	7.00-	•	•	•	•	•	•	Þ
241	00	9 6	40	0.5	4	2 6	- «	0) C	

241	80	4 19			
02	7.00-	•	052	6	33
03	7.00-	40	9	ω	S.
40	7.00-	13	153	40	33
9	7.00-	86	193	05	33
90	7.00	9	14	04	35
07	7.00-	433.5	2496	S	4
80	7.00-	04	270	.0521	.3535

	.07 .287	3	1 2	•	• 90	23		67	12		
	•		•	•	.12(•	•	-		•
	077	161	1	212	-2649-	212	7	345	276		- 4056-
4 70	_	1 4	J.	7	6	1	2	37		2	0.009
0		•	•	•	•	•	•	•	•	•	8.00-
241	Š	70	03	40	† u	2	90	10	5	80	60

•2906	0	•	28	0	0	ì	8	30		3	
0	0	0	*	,1536	0	0	51	20	1	2	
075		01	257	-3200-	1	2	424	444		16	
			~	275.0	•	\$	3		•	å	
	•				•	•			٠	-00-6	
0	4	60	100	† u	n	90		- (3 3	60	

	.2884	.2874	CA	.2847	.2872	.2866	.2862	.2883	.2885
	0	.0849	.1416	.1963	.2319	.2687	.3019	.3195	.3352
	-0471-	3	.2673-	29	4	10	1	19	-277-
4 22	29.3	102.6	175.8		322.3	3			
80	00	8	80	80	80		00	10.00-	10.00-
141	02	03	40	05	90	07	80	60	10

	.2825	28	21	27	-	2	2	27
	***00	.1437	~	.3075	4	4	6114.	S
	9	261	4051	5377	553	7519	8360	293
4 23	60.1	133.3	90	19	53	27	00	8
8 O	2	12.00-	7	2	2	7	2	2
241	02	03	40	0.5	90	07	80	60

	.2862	.2865	.2882	.2835	.2821	.2797	.2787	2802
	.0983	. 1842	.2591	,3625	. 4468	.5334	. 6046	6483
	.1859-	-3492-	-0664.	-6681-	-8131-	-6646.	1.0671-	1.1601-
+7 +	80.6	153.8	227.1	300.4	372.2	448.4	517.9	0.009
0	14.00-	14.00-	14.00-	14.00-	14.00-	14.00-	14.00-	14.00-
147	02	03	40	90	90	07	80	60

	.2575	.2638	2627	-	**/ **	.2773	2784		.2783	2700	04.74	2800		· 5834	
	9650	0.841	1364	• 1300	.2269	.3245	32 17	C) 1+ ·	5140	6703	.0400	1757	1	.6821	
	-0589-	1312-		-1017.	3873-	-5658-	****	19061	-1906		1.0000-1	1000	1.1000	1.2564-	
67 +	32.3	0.07		104.9	178.2	261.4	117	324.2	307.6	20.00	4.70		244.3	6000	
80	•00.41	2000	100.01	16.00-	14.00-		10000	16.00-	100	100001	-00 - V		16.00-	16.00-	0000
241	ć	70	03	70	4	5	90	07			0		10)	77

	272	275	277	283	285	287	00	
		091	138	222	306	380		510
	0821	1567	2405	4092	5743	7289	-8747-	0033
97 4	5	2.	19.	92.	65.	39.	412.7	86.
08	9.00	8.00	8.00	8.00	8,00	8.00	18.00-	8.00
241	02	03	40	0.5	90	07	80	60

7	-0568-	.1190	0.009	4.00	11
~	.0547	.1171	550.1	4.00	10
• 3068	-0452-	.1061	477.5	4.00	60
3	.0304-	.0903	404.2	4.00	90
.3357	.0207-	.0736	330.8	4.00	07
.3545	-1010.	.0539	258.2	4.00	90
.3840	.0013-	.0324	184.8	4.00	02
'n	.0070	.0125	111.5	4.00	40
.5435	• 00 20	9900	74.8	4.00	03
•	.0030	.0028	38.1	4.00	02
			2 01	60	241

	270	283	.2678	261	254	252	249	20	51
	119	245	-2160	139	187	233	574	304	315
	332	082	.1477	212	273	333	386	459	47
20 0	S	18.	192,2	65.	38.	12.	86.	59.	00
60	•		8.00			. •		•	
241	00	9 6	40	0.5	90	0.7	80	60	10

	.2539	52	248	245	43	243	242	242	j
	690	29	-2159-	300	382	459	200	1 0	70
	160	189	3007	604	515	1 4 7	7 6	770	0 V
		0	212.2	4 Q	ם טוני	מ מ	2	0	8
N	,	•	12.00	•	•	2	ż	2	2
241		02	03	4	02	90	0	08	60

27	~	27	26	26	•	26	26		
0	-1686-	198	244	350	421	510	0.5	219	
~	.2796	33	39	54	99	62	92	03	
S		2	Š	~	÷	;	~	å	
5.8	15.80	5.8	5.8	5.8	5.8	5.8	5.8	5.8	
02	60	40	90	90	07	80	60	10	

	075	173	.2161	274	292	303	306	300	295	3
	003	2010	.0153-	0158	0275	365	1440	570	68	
	02	600	.0174	026	55	82	104	24	41	.1602
5 05	•	2	92.6	31.	03.	75.	+7.	18.	•	00
60 0	4.00	4.00	00	4.00	4.00	00.4	4.00	4.00	•	00.4
241	0	4 6	9 0	50	90	07	80	60	01	11

	295	278	17	267	63	261	.2620	261	259
	0145	51	0940	1379	815	2183	.2480-	2781	910
	0300	0	~	.2213	.2814	G	.3814	.4246	.4540
5 06	48.1	121.3	193.1	264.1	335.9	407.7	479.2	551.2	0.009
60		•	•	8.00			8.00		
241	02	60	40	9	90	10	80	60	10

	282	.2762	270	262	259	257	256	253	252
	029	.0840.	146	228	301	369	437	506	569
	0.5	.1451	24	35	45	55	64	73	81
0	45.2	117.0	188.8	vo	ന	O	~	•	~~
N O		12.00	2	2	2.	2	2	2	2
147	00	0 0	40	0.5	90	07	80	60	10

	43	26	269	269	270	268	99	.2656
	067	132	40	278	333	15	.5015-	12
	105	214	35	455	550	673	80	.9688
5 08	79	51.	24.	95.	67.	39.	511.7	00
60	5.8	5.8	5.8	5.8	5.8	5.8	15.80	5.8
241	05	03	40	90	90	07	80	60

241	60	60 9			
ć		ď	0650	36	,2686
70	•	1		003	272
03		57.	C)CT.	7 1	1 4
40		.66	27	=	200
3 (73	9	258	262
0	•	•		220	262
90	•	•	2 (100	26.2
07	14.00	416.5	.6000	-6766 :	4 6
		88.	7	469	760
	•	00	83	558	258
Š	•		6	107	255
C		ŝ	2	3	•

	.2300	255	256	252	249	248	249	43
	156	.0884-	1431	2045	671	3224	36	515
	.0563	$\overline{}$	210	293	15	448	11	9
5 10	6	125.0	96.	67.	6	10.	82.	8
60	10.00		0	0	10.00	0		0
4.1	02	03	70	0.5	90	0.7	80	60

	48	6	78	13	269	09	69	65
	• 2	• 2	• 2	• 5	• 2	•2	• 5	• 2
	24	*	88	59	-699	15	23	99
	0				•			
	46	16	56	17	1119	28	65	21
	•			.2	• 2		(1)	
77	8	6	-	2.	4.4	9	-	0
υ.	•				35			
60	00	00	00	00.	8.00	00	00	00
	60	00	00	- 00	ω	00	· 00	Œ
241	02	031	40	0.5	90	0.7	08	0

	367	.3493	312	302	90	282	83	85	85
	.0011-	-9200	0292	6640	-07470-	9860	1132	.1235-	.1326-
	.0088	.0347	.0736	.1116	.1478	.1808	.2087	.2327	.2499
71 (41.5	113,1	184.7	256.3	327.9	401.0	472.6	544.2	0.009
0	00.9	00.9	•			•	•		
-	03	60	40	0.5	90	20	80	60	10

147	2	0			
02		6	011	0072	~
03	•	21.	32	0137	e
40	5.00	193.3	.0596	-0188-	.3289
0.5	•	65.	089	0338	e
90	•	37.	16	0513	S.
07	•	08.	139	0628	w
90	•	80.	1.58	734	.2996
60	•	52.	74	07	•3006
10	•	00	83	808	S.

	.0063	-1625-	3,6491	.4875	,3905	.3693	.3465	.3459	.3381	3407
	.0027	.0061	.0114	.0085	.0003-	-0065-	-0167-	-0100	.0260-	-0262-
	.0014-	-0025-	.0007	.0178	.0393	.0573	.0734	.0863	*960	1021
5 14	•							454.3	528.2	0.009
60	4.00	•		•	•	•	•		4.00	
241	02	03	40	05	90	07	80	60	10	

741	60	c 15			
02	3.00	59.8	04	004	9
03	-	31	014	600	52
40	•	03	029	N	\sim
9	3.00	275.9	.0433	.0124	644
90	•	47	051	012	9
07		20	53	~	45
80		93	058	3	438
60		00	061	800	_

5

	.3975	5.4969-	.32	649	.23	.26	•29	.89	
	0	.0265	40	40	05	05	40	03	
	003	-6000	400	600	012	011	010	013	
	~	143.7	15	87	59	31	03	0.009	
S	•	•		•	•	,	•	2.00	
747	02	03	40	0.5	90	0.7	6	60	

		'n	n,	7	5.8461-	7	•	u 1	-6394-
	.0117	9	1640.	90	.0655	+190.	90	.0530	.0263
	-6700	-0036-	-0100	-8000	-0001-	.0083-	-0125-	-0118-	-1500
•	CO.	-	- 40	000	330.1	_	•	•	•
•		•	1.00	•	1.00	•	•	•	•
147	00	9 6	40	0.5	90	07	80	60	10

	3.9465-	4.1600	2,2351	2,6871	4,3812	6.3191-	4.9840-	4.3732-	5.3920
	02	•	05	~	0	0	90	424	.0425
	201	005	900	90	003	000	002	02	00
91	62.6	132.9	203.3	273.6	344.0	415.7	485.3	555°7	0.009
S	1.00	•	•	1.00	•				1.00
147	02	03	40	05	90	07	80	60	10

241	60	5 19			
00	00*0	P-	117	02	27
03	000	128.0	.0185-	.0311	.0558
40		8	0224	40	000
0.5	•	8	212	4	32
90	•	9	0211	40	0563
0.7	00.0	0	0232	4	149
80	•	9	242	4	900
60	•	0	242	4	063
10	•	0	221	4	46

	192	490		410	515	5	471	311	3
	1133	1600	-0000	0122	0171	0185	8800	500	031
	013	018	.0284-	031	027	023	022	023	027
5 20	_	7	193.2	63	33	07	72	42	8
60	•	•	1.00	•	•	•	•	•	1.00-
241	ć	4 6	90	2 0	3 6	0 0	- a	000	10

241	60	5 21			
03	•		0122	0025	
9		13.	0267	0074	4
40	•	83	-0414-	- 00 84-	43
0.5	•	52.	0510	0101	3
90	•	20.	0562	0003	42
07	•	90	530	0165	5
8		59.	0525	960	2
0	•	29.	0537	003	37
9	2.00-	0.009	0550	25	29

	a	.3644	a	.3607	G	G	.3667	G	S
	6000	.0058	.0042	.0116	.0050	.0198	.0112	.0223	.0239
	20	045	057	-0742-	080	96	088	091	84
77 6	67.8	137.0	206.2	275.4	343.3	412.5	481.7	550.2	0.009
N	•	•	•	3.00-	•	•	•	•	
1	02	03	40	050	90	20	80	60	10

241	60	5 23			
02	4.00-	51.8	0217	8	353
03	-00-4	21.	0474	0	338
40	-00°+	190.1	.0714-	.0231	.3273
0.5	-00-4	59.	0914	02	328
90	4.00-	28.	1108	60	323
07	-00-4	97.	1272	05	309
80	-00-4	66.	388	05	307
60	-00-4	37.	1409	05	308
0	-00-	00	1457	90	300

	32	30	30	29	.2878	28	28	27	27
	011	027	042	059	.0790	460	105	116	122
	31	690	460	124	.1517-	174	192	205	212
5 24	63.7	2	ċ	6	7	9	*	3	0
60	•	•	8	800	-00-5	00.	900	00	00
241	02	03	40	90	90	07	80	60	10

	11	287	.2847	280	273	272	272	282	276
	022	041	.0636	087	113	131	148	144	163
	3399	0796	-1186-	1574	1924	2212	2474	2628	282
67 6	-	24	192.3	62	29	97	65	33	0
>	-00-4	•	-00-9		•	•		•	
241	00	9 6	9 0	0.5	9	0 0	000	000	

	284	.2822	277	267	265	266	267	270	270
	24	.0531	083	119	146	168	187	66	214
	046	-1960.	145	192	32	268	299	26	353
26	59.9	27.	. 76	9	27.	93.	59.		00
60	7.00-	7.00-	•	•	•	•	•	•	•
241	02	03	40	05	90	07	90	60	10

241	60	5 27			
1	6		0611	036	73
02	•	+	,	073	040
03	•	37.	72		,,,,
40		97.	0074	9	2070
י ני		63	339	154	200
90	•	29.	2839	6	107
0 0	-00-8	396.0	.3258-	.2166	.2590
- 0	•	62.	3953	7	251
0 0		27	030	271	257
Č	•			200	257
20	•	000	• •	,	•

	261	256	256	254	253	.2523	252	252	249	
	54	103	147	192	235	.2734	305	338	373	
	083	152	218	280	338	16	438	483	.5233-	
5 28	00	44	10	76	43	60	75.	40	0.009	
60	•	•		•	•	•	•	•	-00-0	•
241	03	7 6	0 0	200	2 6	2 6	- a	0 0) r	•

ì		26	C		**	2	7	ü	~		i	.2515	ĺ
		107		101	221	27.2		315		7	39	4367	
	081		0	247	1	1 0	38	44		2	56		70
	0 67	2 . 70	129.1	195.4		261.6	327.8		274.0	460.3	4	6.076	0.009
۸ ٥		Š	10.00-		5	ŏ	c	5	ō	C	>	10.00	10.00-
241		05	60) (40	0.5		0	07	0	9	60	10

	ထ	~	9	25	S	S	.2544	5	-
	.0510	.1000	~	.2484	.3112	.3706	.4267	.4800	1.3714
	9460	16	2869	3751	28	19	-6200-	68	-9778-
5 30	3	40	90	73.	39.	.90	473.1	39.	00
60	2	•	2.	•	12.00-	•	12.00-		00
241	05	03	40	05	90	0	80	60	10

	.2796	569	2 7 6		797	262	170		222	757	ì	Š	
	.0700	142		1	2	350		7	8	643	5	2	
	124	223	9 (-3665.	150	540		230	729	100	029	910	4
5 31	4		Š	219.0	85) 	-	17.	A 3.		, V	0	•
60	Ċ	3	+	14.00-	00	•	4.00	4	00	2	0		5
241	ć	70	03	40		2	90	10	- 6	0	0		01

9	.2586	262	263	265		261	
!	.1439	210	288	404	548	637	
	157	3257	4407	5386		992	
26 6	œ r		-	93	465.9	32	
60	00	00	00	00	16.00-	90.9	>
141	02	03	9 0	90	800	60	2

	271	.2715	272	274	276	279	279	279	280
	04	.1037	170	34	289	36	398	466	53
	190	.1721-	2858	4002	5030	66	7094	8298	9920
5 33	•	112.7	79.	45.	11.	7	44.	.60	000
60	8.00	18.00-	8.00	8.00	8.00	8	8.00	8.00	8.00
241	02	03	40	0.5	90	07	08	60	10

	272	274	275	276	278	280	282	.2827	280	
	054	117	183	247	300	50	402	•	559	
	160	199	315	429	528	629	737	854	1.0042-	
5 34		3	0	24.	20	27.0	23	10	0.009	
60	a	• •	•	•	•	•	•	o a	18.00-)
241	ç	700	9 0	4 1	200	9 6	2 0	0 0	5 6	

	.3079	2968	2025	67670	6767.	•2929	7600	2042	2028	2025	-7670
	_	, ~	- 1	.1034	\sim	(, ,	1000	., .	4004	. 4280
	_	4 6	77		64	5	, ,		2	-8284-	
22	0	000	147.0	213.2	279.5	2,40	0+0+0	411.3	478.8	545.0	0.009
60		-00°0Z	20.00-	20.00-	100	0000	20.00	20.00-	20.00-	20.00-	20.00-
241		05	60	40	i u	0	90	07	08	60	10

2 8.00 600.0 1.3330 .8111- .2703

02 4.00 600.0 .2197 .0658 .4519

NAVORD Report 4425

.4106

.0357

4

.3834

0.0

x 00

7

)

	316	323	323	328	395	393	475	605	90	389		.2501	28	215	18	59	
	027	020	020	015	000	0002	9600	0188	96	0000	0231	-9980°	0518	86	54	99	
	072	090	59	0477	0365	030	0228	9210	018	029	40	.0516	690	077	087	25	
	25	25.	25.	25.	25.	25.	25.	25.	25.	25.	25.	125.0	25.	25.	25.	25.	
•	.00	•	80	•	•		•	000	•	•	•	2.90	•	•	•		
	01	05	03	40	05	90	07	08	10	11	12	13	14	15	16	17	

	9	28	31	290	84	05	47	21	69	17	62	.2186	28	73	57	32	48	31	17	23	46	48	
	112	16	45	044	42	52	90	2	03	03	232	.0287-	440	027	297	43	539	724	893	055	05	078	
	683	48	691	865	19	597	396	38	325	27	202	.0331	24	29	44	54	75	90	02	24	45	50	
7 02	26.	26.	26.	26.	26.	26.	26.	26.	26.	26.	26.	126.0	26.	26.	26.	26.	26.	26.	26.	26.	26.	26.	
10		06	40	80	0	30	50	.80	00	.20	.50			6		4		9				10.00	
241	10	0	7 6	9 6	0.5	90	07	80	60	10	11	13	14	4	9	71	. 60	0	20	2.5	22	23	

	70	0	*0	16	08	.3427	14	18	19	52	2	75	1	63	46	98	84	54	82	12	4
	760	051	37	022	25	.0104	03	013	40	03	40	17	0	176	48	241	02	127	036	60	56
	552	151	864	604	602	.0422-	368	356	314	151	07	12	17	27	48	51	55	67	92	86	98
7 03	26.	26.	26.	26.	26.	126.0	26.	26.	26.	26.	26.	26.	26.	26.	26.	26.	26.	26.	26.	26.	26.
10	00	7.9	99	10	8	3.60-	.80	0	.2	5	3	0	8	9	7		9.	2	0	6	
241						90															

	19	82	0.5	34	34	53	15	15	74	19	05	85	89	.2954	36	25	34	32	35	
	89	90	29	27	56	14	0.5	900	353	288	10	19	08	-0186-	574	905	980	51	50	
	593	941	363	096	929	778	64	538	250	209	10	20	21	.0385	74	08	37	89	20	
	. 40	. 40	.40	. 40	. 40	. 40	. 40	. 40	. 40	. 40	04.	.40	. 40	204.0	04.	. 40	.40	. 40	0	
2	10.00-	06	4	0	90	10	O	S	80	0	5	6	-	2.90	4	0	r.	0	0	
147	01	00	03	40	0.5	90	0.7	08	60	10	12	13	14	15	16	17	18	19	20	

	1	63	78	309	42	95	07	47	84	16	30	.3678	59	7	38	34	5	
	188	134	91	045	019	010	0038	0112	113	0304	195	-00052-	515	928	179	603	829	
	507	092	601	107	0760	3	0494	0404	02	0	~	.0430	~	~	S	0	-	
90 /	33.	53	03.	03.	03.	03.	03.	03.	03.	03.	03.	203.0	03.	03.	03.	03.	03.	
10	00	30	80	.30	.70	-	.20	50	.70	8	3	2.30	6	*	0	9	0	
241	01	02	03	40	0.5	90	07	80	60	1	12	13	14	15	16	17	18	

	1-	28	31	36	•	50	56	8	83	-		· LO	-4	•	_	_	. ^ .	.2249
	186	113	056	012	173	0302	0358	14	0165	125	122	0064	201	2	550	127	13	-2331-
	309	2211	155	1002	0640	0522	0414	-0226-	4100	007	021	34	2	8	0	1	5	6/
1 0 7	55	55	55.	55	55.	55	55.	255.0	55.	55.	55.	55.	55.	55.	55.	55.	55.	55
10	10.00-	6	.40	•	•30	20	8	1.00-	3	• 50	3	•	8	5	6.	4.	6.	10.00
241	01	02	03	40	90	90	07	80	60	11	12	13	14	15	16	11	18	19

	5	59	289	323	86	76	10	606	67	605	4	42	96	4	3	39	.2423	
	9	75	02	45	002	0235	039	219	0093	024	27	0	033	334	311	372	364	
	3	8	66	-1314-	797	045	24	20	10	23	23	.0338	70	2.1	78	94	5	
7 08	60	60	60	60	60	60	60	60	.60	.60	60	309.0	60	60	60	.60	6.	
10	00	7	.50	5.00-	•		30	- 20-	•30	•	•	2.50	•	•	•	•	10.00	
241	01	02	03	40	90	90	07	10	12	13	14	15	16	11	18	19	20	

	62	82	00	55	52	.5519	46	30	18	0	85	27	20	22	26	36
	235	49	092	024	038	0379	038	291	25	0	305	873	443	46	429	418
	645	2732	01	1364	614	0474	037	172	015	033	057	05	68	29	63	10
60	12.	12.	12.	12.	12.	312.0	12.	12.	12.	12.	12.	12.	12.	12.	12.	12.
0		•20	1	10	09.	2.10	~	9	ō	00		0	9	7	9	9
741						90										

	262	268	286	3 %	340	5 6	3 4	653	10		10	. 4	4 5	7 -	0 0	2347	١
	273		134	9	028	0176	0.45	0348	197	0240	003	134	<u> </u>	19	542		
	207	4	536	2	150	603	. 2	266	4	8	0	7	3	0	3	.4117	
7 10	20	20	20	20	20	20	20	2	20	2	2	2	0	2	Ö	370.0	
10	00	•	.10	2.60	.10	.50	ų,	ÒC.	n,	1.20	0	S	7	•	•2	0	
741	01	02	03	04	05	90	07	90	10	11	12	13	14	15	16	17	

	90	2	4	15 0	30	.4895	619	.492	12	.122	819	625	302	255	4	6	37	38	
	0		3	0	5	0250	351	3	191	22	025	026	339	166	999	303	0	536	
	117	170	184	989	068	.0513-	0308	182	10	207	7	22	9	4	2 1	C	96	9	•
	32.	32	32	32	32	32	32.	32.	32	32	32	32	32	32	32	32	32	432.0	
2	10.00	00	50	0	40	2,50-	80	10	30	04	•	•	•	•	•	•	06-8	10.00	
147	5	3 6	7 6	2 6	e u	9 6	000	8	0) =	12	4 -	7 7	4 -	7 1	2 -	- œ	0	4

	253	268	87	311	385	504	56	85	54	30	80	49	4	40	.2271	22	
	83	41	4	49	40	187	22	033	13	052	45	125	831	449	66	69	
	558	911	-	1714	896	0334	168	071	16	56	16	58	14	64	6094.	53	
1	08	08.	08.	08.	08	80	.80	08.	. 80	08.	0.8	08.	08.	.80	508.0	98	
•	.00	8.10	5	00	044	90	.20	04	.2	6.	1	2	8	3	8.80	0	
1	01	02	03	40	05	90	07	80	10	11	12	13	14	15	16	17	

	56	307	327		2 1	377	7	513	489	1	7	404	Š	16		7	5	0		32	
	138	950	450	100	0042	0039	-0100-	9610	4010	000	0186	0098	011	0510		200	042		707	441	
	121	1343	730	0001	05/9	0542	-03460	0325	0 1 0 0	0770	013	019	029	50		138	118		46	8	
7	6	0		,	6	6	169.0	0		Ž	69	65	65	9	_	69	0,4		69	69	
2	0		0	00	50	90	2 30	י י	2	ਲ,	8	ະຄ		•	•	4		•	40	9	
241	5	3 6	7	03	70	ر د	3	0 0	5	80	10	=======================================		71	13	14	1 -	7	16	17	

	9	~	4	S	0.	0	0		เข	00	_	9	~	4	~
	267	292	306	307	457	3	490	50	.619	2	2	06	17	8	6
	070	037	023	910	0057	690	0072	4110	.0171	0000	0296	0445	0673	751	96
	113	0763	0556	386	0173	018	0147	0172	0	015	028	044	62	73	•0936
7 14									96.0						86.0
10	00	60	10	60	0	2.20-	50	70	06.	•	3,10	•	•	7.80	10.00
241	5	10	0 0	4	4	90	0	8	90	=	12		1	15	16

	265	333	.3001	312	7	4	8	20	20	22	2	7	3	80	2	~	
	071	0	.0250	910	4	005	000	600	•	012	19	0	65	49	.0453-	46	
	112	010	.0544-	1040	0282	02	0253	0153	60	600	018	038	057	72	075	95	
7 15	•	2	92.0	~	2	2	~	~	~	2.	2	~	7	7	7	2	
10	-00-01	7.30	0	20	70	90	20	60	04	2	0	S			1.	0	
241	5	100	0 0	40	0	90	07	800	01	1	17	13	1	15	16	17	

	2704	2743	3382	3064	3159	3715	3969	3	2546	-		2976	1875	1830	1774	000	2210
	072	059	.0193	023	.0151	002	8	,000	.0167	_	15	•	36	.0580.	~	18	-0844-
		400	•	0556	39	0273	0286	027	.0243-	11	10	18	35	55	72	85	86
7 16	•	•			0.46		0.46	0.46	94.0	0.46	0.46	0.46	0.46	-	0.46	-	-
10	10.00-	-	7.10-	2.60-	4.10-	2.50-	•	1.00-	-02.	• 50	•		3.60	•	•	•	•
241	01	05	03	40	05	90	0	9	60	11	12	13	14	15	3	11	78

	.2903	2.0	1	202	282	1		-	Ž	2		304		2	-	7	2		4097	0	1	73	. 0	8	
	.0268	0240	140	012	0		410		010	0 7 0 0		000	1	8		10	000	ţ	.0203			07870		2	
	52	1000	740	000	-	021	0167	7	0133		2800	2000	2	910	•	10		70	×			·	3	$\tilde{}$	
17 /			0.06		000	000	200	0.06	0	000	0.00		0.06	0	200	000	•	0.06		2000	000		0.06	0	
10	6	S. 00.	90		8	0	2	30		3	200	•	• •	1	2.	, '	÷					٠	•	•	•
241		0		70	03		40	4	1	90		0	0	>	0	4	H		7	-		+	4	7	7

	4	290	24	372	12	85	.4579	30	15	633	22	54	24	10	16
	N	028	4	003	30	0	0057	-	8	016	3	51	3	9	13
	•	5	424	310	287	203	.0173-	0062	0	-	2	~	4	o	00
7 18	22.	22.	22.	22.	22.	22.	122.0	22.	22.	22.	22.	22.	22.	22.	22.
01		30		20	20	20	97.	-10-	040	06*		•	•	4.00	•
241							20								

	.3014	.3182	.3527	04346	.5287	. 6065	.6061	.5510	6989	.5879	.4382	.3001	.2556	.2466
	.0489	.0301	.0116		.0227-	~	-1660.	,0062	.0233	.0238	. 00 88	.0250-	.0532-	.0786-
	7	-	0590	423	6.1	221	0	8	~~	. 4	61	•0544	.0780	.1081
7 19	11.	11.	11.	11.	11.	11.	11.	11.	11.	11.	11.		•	
10	-00-5	3.90-		.80		80	-30-	•20	• 80	•	•	•	3.80	2.00
241	01	02	03	40	90	90	10	60	10	~	12	13	14	

	30	32	•	S	.5641	88	80	-	4	0	9	0	9	.2510	
	.0570	030	800	013	.0265-	9	00	Ó	.0351	.0273	.0144	-0294-	0	-6680.	
	24	9.1	990	426	-0308-	0138	043	002	12	52	37	99	95	27	
07 /	63.	63.	63.	63.	263.0	63.	63.	63.	63.	63.	63.	53 °	53	53.	
01	•	•	80	.80	I.30-	80	30	•30		•	1.90	•			
747	01	05	03	40.	05	90	10	60	10	11	12	13	14	15	

.3387	34	.3882	.5102	.6333	1.0123	30	96	.6688	.5138	.3957	.2832	.2522	.2410	
034	27	001	0263	380	-0640.	0430	24	028	19	00	439	83	104	
310	190	9440	445	0315	-0158-	0022	800	20	32	48	80	15	46	
	6	6	6	5	309.0	6	6	6	6	6	6	6	6	
0	.2		7	9.	1.10-	9	S	0	•	0	0	0	5.00	
01	02	03	04	05	90	0.7	60	10	11	12	13	14	15	

	2.8	76	371	479	, 4	938	252	. 6	985	7	644	30.8	6 6	,2561
		63	.0080	020	0284	0421	0284	025	36	03	012	34	781	(1)
	39	128	.0783-	4	0325	015	9900	0	012	026	043	081	24	•
7 22	73.	73.	373.0	73.	73.	73.	73.	73.	73.	73.	73.	73.	73.	13.
10	-00-5		3.10-		.60	-	-09.		•	1.50	•	3.00	•	2.00
241	01	02	03	04	05	90	07	60	10	11	12	13	14	15

	.3171	20+0.	2010	•	7080°T	•	2116.	4687	.2626	.2567
	.0603	770	\$ 000	791	27	434	30 1	215	038	323
	-1611-	-1260-	-88/0	-0391-	-0081-	9800	•050	8660	.1604	.1956
7 23	468.0	89	68	68	68	68	68	68	68	68
10	• 00		90	06.	90		2.20	•	•	•
241	01	02	03	40	05	0.7	90	60	10	=

	243	.2502	248	248	247	2	246	244	4
	345	-6690.	970	1295	610	1911	184	1642	2633
	940	.0901	135	180	223	9	299	336	5
70 0	68.1	126.7	89	52	15	∞.	4	40	35
71		000				•	•	•	•
241	Ċ	1 6	3 6	2 0	9 6	200	. «	000) C

 241
 11
 8 01

 02
 4.00
 69.3
 .0049
 .0054***
 .1716

 03
 4.00
 132.4
 .0165
 .0144**
 .2175

 04
 4.00
 194.7
 .0284
 .0187**
 .2603

 05
 4.00
 257.8
 .0444
 .0251**
 .2789

 06
 4.00
 320.8
 .0600
 .0384**
 .2640

 07
 4.00
 383.8
 .0727
 .0461**
 .2652

 08
 4.00
 509.9
 .1033
 .0647**
 .2657

	.2208	9	229	230	230	230	23		236	í
	6	104	1500	1000	100	2201	3002	44.15	1 10	
	057	7	1 6	0 :	717	9 9	420	4964	0	Š
8 03		0 0	,	35	Š	<u>.</u>	73	436.1	66	62
11		۰	۰	~	2	20	~	12,00	2	′
241		02	03	0.4	0.0	90	0.7	0.8	60	0

								,
27	26	26	26	26	25	25	25	3
0454	0928	1502	2085	2633	3273	3961	4645	045
075	147	231	318	399	487	580	672	721
•	9	4	7	\circ	3	ø	9	0
5	5	5.	5	5.	5	5	5.	5.
02	03	04	0.5	90	07	08	60	10
	15.80 66.8 .0754 .0454 .27	15.80 66.8 .0754 .0454 .27	15.80 66.8 .0754 .0454 .27 15.80 129.8 .1470 .0928 .26 15.80 194.7 .2312 .1502 .26	15.80 66.8 .0754 .0454 .27 15.80 129.8 .1470 .0928 .26 15.80 194.7 .2312 .1502 .26 15.80 257.8 .3186 .2085 .26	15.80 66.8 .0754 .0454 .27 15.80 129.8 .1470 .0928 .26 15.80 194.7 .2312 .1502 .26 15.80 257.8 .3186 .2085 .26 15.80 320.2 .3992 .2633 .26	15.80 66.8 .0754 .045427 15.80 129.8 .1470 .092826 15.80 194.7 .2312 .150226 15.80 257.8 .3186 .208526 15.80 320.2 .3992 .263326 15.80 383.2 .4872 .327325	15.80 66.8 .0754 .0454 .27 15.80 129.8 .1470 .0928 .26 15.80 194.7 .2312 .1502 .26 15.80 257.8 .3186 .2085 .26 15.80 383.2 .4872 .3273 .25 15.80 446.2 .5808 .3961 .25	02 15.80 66.8 .0754 .0454 .2716 03 15.80 129.8 .1470 .0928 .2657 04 15.80 194.7 .2312 .1502 .2651 05 15.80 257.8 .3186 .2085 .2611 06 15.80 320.2 .3992 .2633 .2601 07 15.80 383.2 .4872 .3273 .2576 08 15.80 446.2 .5808 .3961 .2556 09 15.80 509.2 .6727 .4645 .2539

147	•	0	85	-8090	4
. ~	. 4	143.2	.1583	-1149-	.2468
4	4	06	238	1726	24
L.	4	69	321	-2329-	24
9	4	32	403	2950	24
~	4	95	93	3658	4
. ω	•	œ	584	-4417-	24
6	4	21	677	5111	4
	4	53	26	.5502~	24

	_
	.2276-
	.2808
0	309.5
1	10.00
4	02

	29	~	9	9	.2589	S	S	3	S
	96	45	20	0635	.0828-	41	85	31	16
	.0190	.0413	.0667	•0965	.1244	.1484	.1729	.1953	.2051
8 07	64.3	27	89	52	315.8	78	11	40	36
11	90.00	•			00.9	•			•
241	02	03	40	0.5	90	07	08	60	10

2 2.00 600.0 .0610 .0395

00.0 02 241

241 11 8 10 02 1.00- 600.0 .0552- .0564 .2